
Aria Ghora Prabono

Implementasi
Pustaka
Deep Learning
Dari Dasar

Implementasi Pustaka

Deep Learning Dari Dasar
Aria Ghora Prabono

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod

tempor incididunt ut labore et dolore magnam aliquam quaerat volup­

tatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri

tamen permagna accessio potest, si aliquod aeternum et infinitum impen­

dere malum nobis opinemur. Quod idem licet transferre in voluptatem,

ut postea variari voluptas distinguique possit, augeri amplificarique non

possit. At.

Daftar Isi

Pendahuluan . ⁠6

1. Optimasi pada Deep Learning dan Permasalahannya . ⁠8

1.1. Permasalahan Proses Pembelajaran Mesin . ⁠8

1.2. Kutukan Dimensionalitas (The Curse of Dimensionality) . ⁠9

1.3. Solusi Naif: Diferensiasi Numerik . ⁠10

1.3.1. Ledakan Komputasi . ⁠12

1.3.2. Batasan Presisi Numerik . ⁠12

1.4. Secuplik Solusi . ⁠14

2. Implementasi Tensor dan Penghitungan Turunan Otomatis (Autodiff) . ⁠16

2.1. Terminologi Tensor dalam Konteks Deep Learning . ⁠16

2.2. Pemanfaatan NumPy Sebagai Landasan Utama Tensor . ⁠17

2.3. Kelas Tensor . ⁠18

2.3.1. Anatomi Kelas Tensor . ⁠19

2.3.1.1. Atribut Utama . ⁠19

2.3.1.2. Mekanisme Pelacakan Gradien . ⁠20

2.3.1.3. Metode dan Fungsi Bantuan . ⁠20

2.4. Sistem Penghitungan Turunan Otomatis . ⁠21

2.5. Operasi Aritmetika Sebagai Proses Konstruksi Graf . ⁠22

2.6. Laluan Mundur . ⁠23

2.7. Implementasi Operasi Pertama: Penjumlahan . ⁠26

2.8. Fitur penunjang kenyamanan . ⁠31

3. Operasi Tensor . ⁠33

3.1. Menangani Broadcasting untuk Operasi Biner Per Elemen (Element-Wise Binary

Operation) . ⁠33

3.1.1. Kelemahan Implementasi Kita . ⁠34

3.1.2. Membalik Efek Broadcasting dengan “Unbroadcasting” . ⁠35

3.2. Pemutakhiran Fungsi Penjumlahan . ⁠36

3.3. Implementasi Beberapa Operasi Biner Per Elemen Lainnya . ⁠38

3.3.1. Pengurangan . ⁠38

3.3.2. Perkalian . ⁠39

3.3.3. Pembagian . ⁠39

3.4. Implementasi Beberapa Operasi Uner (Unary Operation) Biasa . ⁠40

3.4.1. Negasi . ⁠40

3.4.2. Eksponensial . ⁠41

3.4.3. Akar Kuadrat . ⁠41

3.4.4. Logaritma Natural . ⁠42

3.5. Implementasi Beberapa Operasi Reduksi . ⁠42

3.5.1. Penjumlahan Total (Summation) . ⁠42

3.5.2. Rataan (Mean) . ⁠45

3.5.3. Maksimum (Max) dan Minimum (Min) . ⁠46

3.6. Implementasi Beberapa Fungsi Aktivasi . ⁠48

3.6.1. ReLU . ⁠48

3.6.2. Sigmoid . ⁠48

3.6.3. Tanh . ⁠48

3.7. Softmax . ⁠49

3.8. Implementasi Operasi Perkalian Matriks . ⁠50

3.8.1. Kasus Khusus: Batch Matrix Multiplication . ⁠52

3.9. Indexing dan Slicing . ⁠53

3.10. Penggabungan dan Pemecahan Tensor . ⁠54

3.10.1. Stack . ⁠54

3.10.2. Split . ⁠55

3.11. Manipulasi Bentuk . ⁠55

3.11.1. Transposisi . ⁠55

3.11.2. Reshape . ⁠56

3.12. Pemanasan: Regresi Linier . ⁠56

3.12.1. Dataset . ⁠57

3.12.2. Gradient Descent . ⁠57

3.12.3. Kode Selengkapnya . ⁠58

4. Antarmuka Pemrograman Aplikasi (API) Deep learning . ⁠61

4.1. Kelas Module . ⁠61

4.1.1. Anatomi Modul . ⁠61

4.1.2. Forward Pass Abstrak . ⁠61

4.1.3. Mode Training dan Evaluasi . ⁠62

4.1.4. Iterasi Parameter . ⁠62

4.1.5. Metode Magic untuk Ergonomi . ⁠62

4.1.6. Implementasi Lengkap . ⁠63

4.2. Beberapa Jenis Lapisan (Layer) Dasar . ⁠64

4.2.1. Lapisan Linier . ⁠64

4.2.2. Fungsi Aktivasi Sebagai Modul . ⁠66

4.2.3. Lapisan Drop-Out . ⁠66

4.2.4. Lapisan Embedding . ⁠66

4.3. Lapisan Sekuensial . ⁠68

4.4. Fungsi Loss (Loss Function) . ⁠69

4.4.1. MSE . ⁠69

4.4.2. Cross-Entropy . ⁠69

4.5. Pengoptimal (Optimizer) . ⁠69

4.5.1. Kelas Basis . ⁠69

4.5.2. Stochastic Gradient descent (SGD) . ⁠70

4.5.3. RMSprop . ⁠70

4.5.4. Adam . ⁠71

4.5.5. AdamW . ⁠73

4.6. Multi-Layer Perceptron (MLP) dengan API baru . ⁠74

4.6.1. Pewarisan kelas Module . ⁠74

4.6.2. API Lapisan Sekuensial . ⁠75

5. Lapisan Lanjutan . ⁠77

5.1. Lapisan Konvolusional Dua Dimensi . ⁠77

5.1.1. Intuisi dan Motivasi . ⁠77

5.1.2. Konvolusi Sebagai Perkalian Matriks . ⁠78

5.1.3. Im2Col . ⁠78

5.1.4. Col2Im . ⁠80

5.1.5. Fungsi Konvolusi . ⁠81

5.1.6. Modul Conv2d . ⁠83

5.2. Lapisan Pooling . ⁠84

5.2.1. Max Pooling dengan Im2Col . ⁠85

5.2.2. Fungsi Laluan Mundur untuk Max Pooling . ⁠87

5.2.3. Modul MaxPool2d . ⁠87

5.2.4. Jenis Pooling Lainnya . ⁠88

5.3. Lapisan Normalisasi . ⁠88

5.3.1. Normalisasi Batch . ⁠88

5.3.2. Normalisasi Lapisan . ⁠90

5.4. Lapisan Rekuren . ⁠91

5.4.1. Neural Network Rekuren (Recurrent Neural Network) “Vanila” ⁠92

5.4.2. Long Short Term Memory (LSTM) . ⁠94

5.4.3. Gated Recurrent Unit (GRU) . ⁠97

5.5. Lapisan Attention . ⁠100

5.5.1. Motivasi dan Intuisi . ⁠100

5.5.2. Attention Dasar: Bahdanau Attention . ⁠100

5.5.3. Luong Attention: Penyederhanaan dan Variasinya . ⁠101

5.5.4. Self-Attention: Fondasi Transformer . ⁠103

5.5.4.1. Multi-Head Attention . ⁠106

5.5.5. Masked Attention dan Causal Attention . ⁠106

5.5.6. Visualisasi dan Interpretasi Attention . ⁠106

6. Transformer . ⁠107

6.1. Komponen Penyusun . ⁠107

6.1.1. Positional Encoding . ⁠107

6.1.2. Multi-head Attention . ⁠107

6.1.3. Feed-Forward Network . ⁠108

6.1.4. Residual Connection . ⁠108

6.2. Blok Transformer . ⁠108

6.2.1. Blok Transformer Sebagai Modul . ⁠108

6.2.2. Transformer Encoder . ⁠108

6.2.3. Penggunaan Transformer Encoder untuk Klasifikasi . ⁠109

6.3. . ⁠110

Daftar Pustaka . ⁠111

Daftar Gambar . ⁠112

Daftar Tabel . ⁠112

Pendahuluan

Implementasi Dari Dasar

Catatan

• TODO

• Makna “dari dasar”

• Bedanya dibanding buku lain dengan klaim “dari dasar”

• Bahasa pengantar: Py

• Pake NumPy

• API referensi: pytorch

Sasaran Pembaca Buku ini

Untuk Siapa Buku ini Ditujukan

Buku ini ditujukan untuk praktisi rekayasa perangkat lunak yang bekerja dengan sistem machine

learning dan mahasiswa ilmu komputer (atau serumpun) akhir tahun atau tingkat lanjut yang

• Terbiasa menulis program di bahasa pemrograman Python (atau bahasa pemrograman serbaguna

lainnya)

• Terbiasa membaca dan menulis kode tak trivial

• Memiliki dasar kalkulus dan aljabar linier

Pembaca tidak harus menguasai materi deep learning, namun baiknya termotivasi untuk memahami

mekanismenya di balik layar. Penulis juga menyasar pembaca yang mungkin penasaran mengapa

pustaka seperti PyTorch didesain sebagaimana adanya dan melakukan sesuatu dengan cara tertentu.

Mungkin Anda bosan menerima sistem autodiff apa adanya sebagai ilmu sihir atau kotak hitam, atau

mungkin Anda sedang membangun sistem machine learning dan ingin memahami implikasi suatu

implementasi terhadap performa.

Untuk Siapa Buku ini (Mungkin) Tidak Ditujukan

Buku ini bersifat semi-praktis namun tingkat lanjutan. Buku ini tidak akan mengajarkan materi

fundamental machine learning maupun deep learning, tidak pula mencoba meyakinkan pembaca

bahwa neural network adalah teknologi yang ajaib dan berguna bagi peradaban.

Jika pembaca mencari materi yang bersifat pengenalan pada machine learning, silakan memu­

lainya dengan sumber bacaan atau literatur yang lain. Pembaca yang hanya ingin cukup menggunakan

kerangka kerja machine learning tanpa ada keperluan memahami implementasi internalnya mungkin

tidak terlalu membutuhkan buku ini. Jika pembaca tidak terlalu nyaman dengan contoh kode dengan

kompleksitas menengah, mungkin buku ini juga tidak terlalu cocok bagi Anda.

6

Notasi

Ragam Blok Penyerta Teks

Catatan

Blok catatan

Pendalaman

Blok pendalaman

Contoh: Judul blok Contoh

Blok contoh

Peringatan

!
Blok Peringatan

Potongan kode

Potongan kode ditampung dalam blok dengan teks yang disorot. Kadang potongan kode disertai

contoh luaran yang bersesuaian dalam blok abu-abu dengan label “Luaran”.

print("Halo dunia")

for i in ["satu", "dua", "tiga"]:
 print(i)

Luaran

Halo dunia
satu
dua
tiga

Notasi Matematika

• Skalar 𝑥, 𝑦, 𝑎, 𝑏, 𝑥𝑖𝑗 ∈ 𝐗
• Vektor 𝒙, 𝒚, 𝒂, 𝒃
• Matriks 𝐗,𝐘,𝐀,𝐁
• Himpunan 𝒳︀,𝒴︀,𝒜︀,ℬ︀

Bab 1. Optimasi pada Deep Learning

dan Permasalahannya

Tiap inovasi di bidang kecerdasan buatan, mulai dari pengenalan wajah, deteksi objek, hingga

penerjemahan bahasa, semua berujung pada penyelesaian masalah fundamental, yaitu optimasi.

Ketika neural network belajar membedakan citra kucing dan anjing, menghasilkan teks manusiawi,

atau memprediksi harga saham, ia akan aktif melakukan pencarian di suatu ruang parameter demi

meminimalkan galat prediksi. Pencarian kombinasi dari jutaan hingga triliunan parameter ini adalah

soalan utama di dunia kecerdasan buatan modern.

Mekanisme deep learning masih buram bagi banyak praktisi. Kita mudah saja menggunakan

pustaka, memanggil loss.backward() dan optimizer.step() à la PyTorch, kemudian berharap secara

ajaib performa model yang kita latih akan meningkat. Namun, apa yang sebenarnya terjadi saat

pemanggilan fungsi-fungsi tersebut? Bagaimana komputer secara efektif menjelajah parameter dalam

dimensi tinggi? Bab ini akan menjadi pengantar untuk mengulasnya.

1.1. Permasalahan Proses Pembelajaran Mesin

Pada intinya, deep learning ada persoalan mencari suatu fungsi yang memetakan masukan ke luaran

tanpa harus secara eksplisit mengimplementasikan fungsi itu secara manual. Jika diberi citra digit ter­

tulis tangan, prediksi angkanya. Jika diberi teks Bahasa Inggris, beri terjemahan Bahasa Indonesianya.

Kita tidak pula perlu secara manual melakukan rekayasa fitur pada data masukan karena model akan

mempelajarinya sendiri.

“Namun, apa sebetulnya makna dari ‘mempelajari suatu fungsi’?”

Pada konteks neural network, “mempelajari fungsi” ini adalah soal mencari parameter model yang

tepat sehingga model dapat melakukan prediksi yang juga tepat.

Perhatikan pengklasifikasi citra digit berikut ini.

import torch
import torch.nn as nn
import numpy as np

class SimpleNet(nn.Module):
 def __init__(self):
 super().__init__()
 self.fc1 = nn.Linear(784, 128) # 784*128 + 128 = 100,480 parameters
 self.fc2 = nn.Linear(128, 64) # 128*64 + 64 = 8,256 parameters
 self.fc3 = nn.Linear(64, 10) # 64*10 + 10 = 650 parameters
 # Total: 109,386 parameters

 def forward(self, x):

8

 x = torch.relu(self.fc1(x))
 x = torch.relu(self.fc2(x))
 return self.fc3(x)

model = SimpleNet()
total_params = sum(p.numel() for p in model.parameters())
print(f"Total parameters: {total_params:,}")

Arsitektur yang nampak sederhana ini memiliki 109,386 parameter yang perlu dipelajari (learnable

parameter). Melatih model ini berarti mencari konfigurasi parameter optimal. Pertanyaannya, opti­

mal terhadap apa?

Dalam dunia neural network, kita bisa mengukur “seberapa buruk” prediksi model kita saat

dilatih dengan melihat seberapa menyimpang prediksi model dari jawaban sebenarnya. Fungsi untuk

mengukurnya kita sebut fungsi loss. Untuk tugas klasifikasi seperti MNIST, kita biasanya menggu­

nakan ukuran cross-entropy loss:

def cross_entropy_loss(predictions, targets):
 """
 Fungsi loss cross-entropy (yang disederhanakan)

 predictions: (batch_size, num_classes) - luaran model (logits)
 targets: (batch_size,) - label kelas sebenarnya
 """
 # Konversi logits menjad nilai probabilitas
 exp_preds = np.exp(predictions - np.max(predictions, axis=1, keepdims=True))
 probs = exp_preds / np.sum(exp_preds, axis=1, keepdims=True)

 # Ekstraksi probabilitas dari kelas sebenarnya
 batch_size = predictions.shape[0]
 true_class_probs = probs[range(batch_size), targets]

 # Negative log likelihood
 return -np.mean(np.log(true_class_probs + 1e-8))

Melatih neural network berarti mencari nilai parameter yang meminimalkan suatu fungsi loss. Jika

𝜃 merepresentasikan suatu parameter pada model, kita perlu mencari nilai optimalnya, 𝜃∗, dengan

menyelesaikan

𝜃∗ = argmin
𝜃

𝓁︀(𝜃) (1.1)

Jadi, bisa kita pahami bahwa pencarian parameter optimal yang kita bicarakan adalah optimal

terhadap fungsi loss. Inilah inti dari optimasi, penggerak utama deep learning.

Mulai dari sini, semua akan semakin menantang, menarik, dan… rumit.

1.2. Kutukan Dimensionalitas (The Curse of Dimensionality)

Untuk lebih memahami situasi permasalahannya, mari kita visualisasikan apa yang sebenarnya sedang

kita hadapi. Untuk masalah optimasi klasik, kita bisa meminimalkan suatu fungsi dari satu hingga

OPTIMASI PADA DEEP LEARNING DAN PERMASALAHANNYA 9

dua variabel. Kita bisa gambarkan fungsinya di atas selembar kertas, amati lanskapnya, dan identifikasi

puncak dan lembahnya. Namun, pengklasifikasi MNIST kita memiliki 109,386 parameter (109,386

dimensi parameter yang perlu dioptimalkan). Jelas kita tidak bisa menyelesaikan ini dengan brute force.

Kita membutuhkan pendekatan yang lebih efektif dan efisien.

Untungnya, dengan sedikit kalkulus, kita tidak perlu mencari di setiap sudut ruang parameter

secara acak. Kita dapat mencari gradien suatu fungsi untuk mengarahkan pencarian. Gradien akan

menunjukkan arah menuju ketinggian paling curam pada kurva loss, dan kita bisa mengambil arah

sebaliknya untuk menuju nilai loss yang lebih kecil.

Hal ini yang menjadi cikal-bakal aturan pembaruan parameter pada gradient descent:

𝜃 ≔ 𝜃 − 𝛼𝜕𝑙(𝜃)
𝜕𝜃

(1.2)

di mana 𝛼 adalah learning rate. Jangan lupa, 𝜃 adalah satu nilai skalar. Untuk model MNIST,

bagaimana menangani turunan 109,386 parameter 𝜃, di mana ada banyak fungsi rumit yang terlibat

dalam prediksi dan penghitungan loss?

1.3. Solusi Naif: Diferensiasi Numerik

Saat dihadapkan dengan masalah komputasi turunan, insting pertama beberapa dari kita mungkin

mengimplementasikan turunan sebarang fungsi berdasarkan definisi standar,

𝑓 ′(𝑥) = lim
ℎ→0

[𝑓(𝑥 + ℎ) − 𝑓(𝑥)]
ℎ

(1.3)

Untuk komputasi yang lebih praktis, kita gunakan hampiran sebagai berikut.

𝜕𝑙(𝜃𝑖)
𝜕𝜃𝑖

≈ 𝑙(𝜃 + ℎ · 𝑒𝑖) − 𝑙(𝜃 − ℎ · 𝑒𝑖)
2ℎ

, (1.4)

di mana 𝑒𝑖 adalah vektor satuan untuk arah ke-𝑖. Mari kita implementasikan untuk masalah sederhana

untuk memahami mekanismenya. Untuk contoh ini, kita mencoba mencari berapa nilai 𝑤 dan 𝑏 yang

memenuhi persamaan 𝑓(𝑥) = 2𝑥 + 1. Untuk mensimulasikan derau, kita tambahkan suku 0.1𝜀

pada fungsi, di mana 𝜀 ∼ 𝒩︀(0, 1).

import numpy as np
import time

Simple linear regression: y = w*x + b
np.random.seed(42)
n_samples = 100
x = np.linspace(0, 10, n_samples)
y_true = 2 * x + 1 + 0.1 * np.random.randn(n_samples) # True: w=2, b=1

def mse_loss(params, x, y):
 """_Mean squared error loss_ untuk regresi linier"""
 w, b = params
 y_pred = w * x + b

10 OPTIMASI PADA DEEP LEARNING DAN PERMASALAHANNYA

 return np.mean((y - y_pred) ** 2)

def numerical_gradient(f, params, h=1e-5):
 """Compute gradient using finite differences"""
 grad = np.zeros_like(params)

 for i in range(len(params)):
 # Create perturbation vectors
 params_plus = params.copy()
 params_minus = params.copy()

 params_plus[i] += h
 params_minus[i] -= h

 # Finite difference approximation
 grad[i] = (f(params_plus, x, y_true) - f(params_minus, x, y_true)) / (2 * h)

 return grad

Training with numerical gradients
params = np.array([0.0, 0.0]) # Initialize w=0, b=0
learning_rate = 0.01

print("Training with numerical differentiation:")
print(f"{'Epoch':<6} {'Loss':<10} {'w':<10} {'b':<10} {'Time':<10}")
print("-" * 46)

for epoch in range(1000):
 start_time = time.time()

 loss = mse_loss(params, x, y_true)
 grad = numerical_gradient(mse_loss, params)
 params -= learning_rate * grad

 elapsed = (time.time() - start_time) * 1000
 if epoch % 100 == 0:
 print(
 f"{epoch:<6} {loss:<10.4f} {params[0]:<10.3f} {params[1]:<10.3f}
{elapsed:<10.2f}"
)

OPTIMASI PADA DEEP LEARNING DAN PERMASALAHANNYA 11

Luaran

Training with numerical differentiation:
Epoch Loss w b Time
--
0 154.8335 1.439 0.220 0.09
100 0.0499 2.062 0.579 0.03
200 0.0236 2.038 0.738 0.02
300 0.0138 2.024 0.834 0.07
400 0.0103 2.015 0.892 0.02
500 0.0089 2.010 0.928 0.03
600 0.0084 2.006 0.949 0.02
700 0.0083 2.004 0.962 0.02
800 0.0082 2.003 0.970 0.02
900 0.0082 2.003 0.975 0.02

Nampaknya berhasil, parameter yang dicari menghampiri nilai sebenarnya: 𝑤 = 2 dan 𝑏 = 1. Untuk

contoh main-main seperti ini, diferensiasi numerik mungkin saja bekerja. Mengapa kita tidak meng­

gunakan ini saja untuk neural network, khususnya deep learning?

1.3.1. Ledakan Komputasi

Kekurangan terbesar dari diferensiasi numerik akan nampak jelas saat skala permasalahannya mulai

realistis. Tiap komputasi gradien untuk masing-masing skalar paling tidak membutuhkan dua kali

laluan maju pada keseluruhan model: satu untuk perturbasi positif, satu untuk negatif.

Untuk SimpleNet kita dengan jumlah parameter 109,386 akan ada 218,772 laluan maju.

Asumsikan, dengan optimis, satu laluan maju (eksekusi 𝑓(𝑥)) 1 ms. Waktu yang dibutuhkan

untuk menghitung seluruh gradien adalah 219 detik, atau sekitar 3.65 menit, untuk satu mini-

batch. Itu untuk satu iterasi latih saja, dan untuk model yang kecil untuk standar modern. Sebagai

perbandingan, ResNet-50 [1] memiliki 25,600,000 parameter, BERT-Base [2] memiliki 110,000,000,

dan GPT-3 [3] memiliki 175,000,000,000. Pada Tabel 1, kita bisa melihat perkiraan waktu yang

dibutuhkan untuk menghitung gradien seluruh parameter model dengan asumsi satu mini-batch

berukuran 32 sampel.

Model Dataset Jumlah Sampel Data Latih Waktu Total Per Epoch

SimpleNet MNIST 60,000 113.9 Jam

ResNet-50 ImageNet 1,281,167 65 Tahun

BERT-Base BookCorpus 3,300,000 719.4 Tahun

GPT-3 Common Crawl 300,000,000,000 104,047,754,946 Tahun

Tabel 1: Perkiraan waktu yang dibutuhkan untuk menghitung seluruh gradien

1.3.2. Batasan Presisi Numerik

Katakanlah kita diizinkan berfantasi memiliki sumber daya komputasi tak hingga. Diferensiasi

numerik akan tetap menghadapi batasan lain, yaitu presisi numerik yang terbatas. Simak dan jalankan

kode berikut.

12 OPTIMASI PADA DEEP LEARNING DAN PERMASALAHANNYA

import numpy as np

def f(x):
 return (x + 1e-10)**20 - (x - 1e-10)**20

def numerical_gradient(x, h):
 return (f(x + h) - f(x - h)) / (2 * h)

x = 1.0
print(f"Function: (x + 1e-10)^20 - (x - 1e-10)^20")
print(f"Evaluation point: x = {x}")
print(f"True derivative: {40 * x**19 * 1e-10}")
print(f"\nNumerical gradients:")
print(f"{'h':<15} {'Gradient':<20} {'Error vs True':<20}")
print("-" * 60)

true_grad = 40 * x**19 * 1e-10
for h in [1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8, 1e-10, 1e-12]:
 grad = numerical_gradient(x, h)
 error = abs(grad - true_grad)
 print(f"{h:<15.0e} {grad:<20.2e} {error:<20.2e}")

Luaran

Function: (x + 1e-10)^20 - (x - 1e-10)^20
Evaluation point: x = 1.0
True derivative: 4e-09

Numerical gradients:
h Gradient Error vs True
--
1e-03 7.60e-08 7.20e-08
1e-04 7.60e-08 7.20e-08
1e-05 7.60e-08 7.20e-08
1e-06 7.60e-08 7.20e-08
1e-07 7.61e-08 7.21e-08
1e-08 7.22e-08 6.82e-08
1e-10 0.00e+00 4.00e-09
1e-12 1.11e-03 1.11e-03
1e-13 1.11e-02 1.11e-02
1e-14 0.00e+00 4.00e-09
1e-15 1.11e+00 1.11e+00

Dari hasil di atas, kita melihat bahwa untuk fungsi sederhana ini, diferensiasi numerik mulai tidak

stabil ketika h terlalu kecil. Ini terjadi karena “catastrophic cancellation”, yaitu saat kita mengurangi

dua bilangan yang hampir identik, sehingga kehilangan semua digit signifikan. Hal ini terjadi dalam

persamaan turunan numerik ketika ℎ terlalu kecil, sehingga 𝑓(𝑥 + ℎ) dan 𝑓(𝑥 − ℎ) menjadi hampir

OPTIMASI PADA DEEP LEARNING DAN PERMASALAHANNYA 13

identik dan pengurangannya kehilangan digit signifikan. Hasilnya, pembilang yang seharusnya kecil

malah didominasi oleh derau presisi floating-point dan membuat hampiran turunan menjadi tidak

akurat.

Masalah ini jauh lebih parah pada model yang memiliki jutaan parameter dengan skala yang

sangat bervariasi. Tidak ada nilai ℎ tunggal yang optimal untuk semua parameter. Sementara sebagian

parameter berada di “sweet spot”, yang lain akan mengalami catastrophic cancellation seperti contoh di

atas. Ditambah dengan waktu komputasi yang lama, diferensiasi numerik menjadi tidak praktis dan

tidak dapat diandalkan untuk deep learning.

1.4. Secuplik Solusi

Alih-alih memperlakukan jaringan saraf sebagai fungsi black box dan mengujinya dengan perturbasi,

bagaimana jika kita bisa mengintip ke dalam dan melihat persis bagaimana output bergantung pada

setiap parameter?

Setiap komputasi neural network hanyalah sederet operasi elementer:

Yang terlihat seperti operasi jaringan saraf yang kompleks...
output = model(input)
loss = criterion(output, target)

...sebenarnya adalah urutan operasi sederhana:
h1 = input @ W1 + b1 # Transformasi affine
h2 = torch.relu(h1) # Nonlinearitas element-wise
h3 = h2 @ W2 + b2 # Transformasi affine lain
h4 = torch.relu(h3) # Nonlinearitas lain
output = h4 @ W3 + b3 # Transformasi akhir
loss = cross_entropy(output, target) # Komputasi loss

Setiap operasi ini memiliki bentuk matematis yang terdefinisi dengan baik, dan yang lebih penting,

turunan yang terdefinisi dengan baik. Aturan rantai dari kalkulus memberi tahu kita bagaimana

menggabungkan turunan-turunan ini. Ide utamanya adalah, alih-alih memperlakukan jaringan saraf

sebagai black box dan mengujinya dengan perturbasi, kita dapat melacak setiap operasi saat terjadi.

Lihat contoh berikut.

a = 2.0
b = 3.0
c = a * b # c = 6.0
d = c + a # d = 8.0

Saat kita menghitung maju, kita secara implisit membangun graf dependensi. Nilai d bergantung

pada c dan a , sedangkan c bergantung pada a dan b . Jika kita melacak dependensi ini, kita dapat

kemudian menelusurinya mundur untuk menghitung gradien secara efisien menggunakan aturan

rantai.

Ini adalah esensi automatic differentiation, yang selanjutnya kita sebut autodiff: membangun

graf komputasi selama laluan maju, kemudian menelusurinya mundur untuk menghitung semua

gradien dalam satu sapuan. Tidak ada perturbasi, tidak ada aproksimasi, semua dilakukan dengan

turunan eksak yang dihitung secara efisien. Di bab berikutnya, kita akan membangun sistem ini dari

14 OPTIMASI PADA DEEP LEARNING DAN PERMASALAHANNYA

awal, dimulai dengan tensor yang dapat melacak riwayat komputasinya sendiri. Anda akan melihat

persis bagaimana ide elegan ini mengubah komputasi gradien dari masalah yang tidak praktis menjadi

algoritma yang efisien.

OPTIMASI PADA DEEP LEARNING DAN PERMASALAHANNYA 15

Bab 2. Implementasi Tensor dan

Penghitungan Turunan Otomatis

(Autodiff)

“Tensor” menjadi dasar representasi data untuk suatu sistem deep learning. Kita akan membangun

fitur-fitur secara bertahap, mulai dari struktur data dasar hingga sistem propagasi balik otomatis dasar.

2.1. Terminologi Tensor dalam Konteks Deep Learning

Sederhananya, tensor adalah larik berdimensi 𝑛 (atau 𝑛-dimensional array), di mana seluruh elemen­

nya memiliki tipe data dasar yang sama. Artinya, larik ini bisa berdimensi sembarang, tidak terbatas

pada dimensi 1, 2, dan 3 saja. Pustaka deep learning populer yang mengadopsi konsep tensor antara

lain, PyTorch1, Tensorflow2, dan burn3.

Bagi pembaca dengan latar belakang fisika dan matematika murni: Anda boleh melupakan dulu

definisi tensor yang Anda kenal. Di dunia deep learning, tensor memiliki makna yang jauh lebih

sederhana. Kata “tensor” dipakai di tiga domain berbeda dengan makna yang sangat berbeda:

Domain Definisi Tensor Contoh

Matematika Murni Objek multilinear yang memetakan vektor ke skalar Tensor metrik Riemann

Fisika Besaran yang bertransformasi dengan cara tertentu

saat koordinat berubah

Tensor stress/strain

Deep Learning larik multidimensi array torch.tensor([[[1,2],[3,4]]])

Tabel 2: Pemaknaan tensor di tiga bidang yang berbeda

Istilah tensor adalah upaya penamaan generalisasi cara untuk menata nilai-nilai dalam suatu ruang.

Jika kumpulan skalar dalam ruang berdimensi satu disebut vektor dan ruang berdimensi dua disebut

matriks, bagaimana dengan dimensi tiga dan lebih tinggi? Dari sinilah beragam penelitian dan pustaka

menggunakan istilah “Tensor”, terlebih sejak dipopulerkan penggunaannya oleh Theano dan Tensor­

flow. Di buku ini, tensor mengacu pada sistem larik multidimensi. Tidak ada transformasi koordinat,

tidak ada kovarian/kontravarian, tidak ada basis vektor. Hanya ada larik multidimensi.

Pembaca mungkin sudah familiar dengan larik multidimensi milik NumPy (NDArray), pustaka

numerik populer untuk Python. Sekilas, sifat tensor mirip dengan larik NumPy. Lantas, apa bedanya?

Sejatinya, nyaris tidak ada bedanya. Pembeda utamanya adalah, biasanya, tensor diimplementasikan

agar mampu melacak riwayat komputasi (sebagai struktur graf) dan gradien. Pustaka yang lebih

mutakhir juga mendesain tensor yang bisa beroperasi di mesin dengan graphical processing unit (GPU)

untuk pemrosesan yang jauh lebih cepat.

1https://pytorch.org/
2https://www.tensorflow.org/
3https://burn.dev/

16

https://pytorch.org/
https://www.tensorflow.org/
https://burn.dev/

Setiap tensor paling tidak memiliki properti “ranking” (rank) dan “bentuk” (shape). Ranking

mengacu pada jumlah dimensi tensor dan bentuk bentuk tensor menjelaskan ukuran tensor untuk

tiap dimensi. Tabel 3 menunjukkan contoh tensor dengan ranking yang berbeda-beda.

Ranking Nama Bentuk Contoh Penggunaan

0 Skalar () Loss value, learning rate

1 Vektor (𝑛,) Bias, data 1D

2 Matriks (𝑛, 𝑚) matriks bobot, citra berskala abu-abu

3 Tensor 3D (𝑛, 𝑚, 𝑝) Tumpukan teks, video berskala abu-abu

4 Tensor 3D (𝑛, 𝑚, 𝑝, 𝑞) Tumpukan citra RGB

Tabel 3: Contoh tensor dengan berbagai ranking

Pendalaman

TODO:

Sejarah penamaan tensor

2.2. Pemanfaatan NumPy Sebagai Landasan Utama Tensor

NumPy telah menjadi standar de facto untuk komputasi numerik di Python selama lebih dari dua

dekade. Pustaka ini menyediakan implementasi larik multidimensi yang efisien dengan dukungan

operasi matematika yang telah dioptimalkan dalam bahasa C. Kita juga membutuhkan kemampuan

serupa untuk implementasi tensor kita. Namun, alih-alih menulis ulang semua operasi larik dari nol,

strategi yang lebih bijak adalah memanfaatkan kekuatan NumPy sebagai fondasi dan menambahkan

kemampuan yang dibutuhkan untuk deep learning.

NumPy menawarkan beberapa keunggulan fundamental yang membuatnya ideal sebagai back

end untuk implementasi tensor kita:

• Performa tinggi: Operasi NumPy diimplementasikan dalam C dan memanfaatkan pustaka

aljabar linier yang telah dioptimalkan seperti BLAS dan LAPACK. Hal ini memberi akses kecepatan

eksekusi yang mendekati bahasa pemrograman tingkat rendah tanpa mengorbankan kemudahan

Python.

• API yang lengkap dan stabil: NumPy menyediakan ratusan fungsi untuk manipulasi larik, mulai

dari operasi dasar seperti penjumlahan hingga operasi kompleks seperti transformasi Fourier. API

ini telah teruji dan familiar bagi komunitas Python, termasuk praktisi dan peneliti.

• Broadcasting: Mekanisme broadcasting NumPy memungkinkan operasi antara larik dengan

bentuk berbeda tanpa perlu replikasi data eksplisit. Potongan kode di bawah menunjukkan contoh

broadcasting pada NumPy. Fitur ini penting untuk efisiensi memori dan kecepatan komputasi

dalam deep learning. Pola yang jamak ditemukan adalah penjumlahan hasil transformasi linier

(perkalian antara matriks masukan dengan matriks bobot) dan larik bias, y = x @ w + b .

Contoh broadcasting NumPy
a = np.array([[1, 2, 3]]) # Bentuk: (1, 3)

IMPLEMENTASI TENSOR DAN PENGHITUNGAN TURUNAN OTOMATIS (AUTODIFF) 17

b = np.array([[1], [2], [3]]) # Bentuk: (3, 1)
c = a + b # Broadcasting menghasilkan larik berbentuk (3, 3)
print(c)

Luaran

[[2, 3, 4],
 [3, 4, 5],
 [4, 5, 6]]

Walaupun andal, kita tidak bisa secara langsung menggunakan larik NumPy di ranah deep learning

modern, karena ia hanya bertanggung jawab untuk melakukan komputasi numerik dan tidak memi­

liki kemampuan untuk melacak gradien. Pendekatan kita adalah membungkus larik NumPy dalam

kelas Tensor yang menambahkan kemampuan yang dibutuhkan untuk operasi-operasi deep learning

dengan tetap memanfaatkan efisiensi NumPy:

Larik NumPy biasa
np_array = np.array([[1., 2.], [3., 4.]])
result = np_array @ np_array.T # Perkalian matriks

Tensor kita: NumPy + kemampuan autodiff
tensor = Tensor([[1., 2.], [3., 4.]], requires_grad=True)
result = tensor @ tensor.T() # Juga perkalian matriks, namun memungkinkan
 # untuk eksekusi laluan mundur

result.backward() # Gradien dihitung otomatis
print(tensor.grad) # Gradien tersedia!

2.3. Kelas Tensor

Kelas ini perlu kita rancang untuk dapat merekam riwayat operasi dan dependensi-dependensinya

(berupa tensor masukan) Berikut sketsa permulaan implementasinya.

from __future__ import annotations

from typing import Any, Callable, Self

import numpy as np
from numpy.typing import NDArray

BackwardFn = Callable[[NDArray], list[NDArray | None]]

class Tensor:
 def __init__(
 self,
 value: Any,
 requires_grad: bool = False,
):
 self.data: NDArray = _ensure_numpy(value)
 self.grad: NDArray | None = None

18 IMPLEMENTASI TENSOR DAN PENGHITUNGAN TURUNAN OTOMATIS (AUTODIFF)

 self.requires_grad: bool = requires_grad
 self.backward_fn: BackwardFn | None = None
 self.inputs: list[Tensor] = []
 self.set_requires_grad(requires_grad)

 def set_requires_grad(self, val: bool):
 self.grad = np.zeros_like(self.data) if val else None
 self.requires_grad = val

 @property
 def shape(self) -> Tuple[int]:
 return self.data.shape

 def __repr__(self) -> str:
 return self.data.__repr__()

def _ensure_numpy(value: Any) -> NDArray:
 try:
 value = np.array(value)
 return value
 except Exception:
 raise ValueError(f"Cannot convert value to numpy array: {value}")

2.3.1. Anatomi Kelas Tensor

Mari kita bedah kelas Tensor secara mendetail untuk memahami peran setiap komponen dalam

sistem autodiff kita.

2.3.1.1. Atribut Utama

Dua atribut berikut ini adalah inti dari tensor:

...
 def __init__(
 ...
):
 self.data: NDArray = _ensure_numpy(value)
 self.grad: NDArray | None = None
 ...
...

Atribut data menyimpan nilai tensor sebenarnya dalam format NumPy array, sedangkan grad

Menyimpan gradien yang dihitung saat laluan balik. Perlu diperhatikan bahwa jika grad tidak bernilai

None , maka ia akan selalu memiliki bentuk yang sama dengan data . Mengapa demikian?

Ingat bahwa gradien menunjukkan “sensitivitas” setiap elemen tensor terhadap luarannya.

Bayangkan tensor x berukuran (2, 3). Jika kita melakukan operasi y = x * 2 , maka nilai x.data[i,j]

dipetakan ke y.data[i,j] . Gradien x.grad[i,j] menunjukkan “sensitivitas”, yang artinya, “jika

IMPLEMENTASI TENSOR DAN PENGHITUNGAN TURUNAN OTOMATIS (AUTODIFF) 19

x.data[i,j] berubah, seberapa besar pengaruhnya?” Secara matematis, x.grad[i,j] menyimpan
𝜕𝑦

𝜕𝑥𝑖,𝑗
. Karena ada tepat satu nilai gradien untuk setiap elemen data, maka haruslah benar bahwa

x.grad.shape == x.data.shape .

2.3.1.2. Mekanisme Pelacakan Gradien

Tiga atribut ini mengontrol sistem autodiff kita:

...
 def __init__(
 ...
):
 ...
 self.requires_grad: bool = requires_grad
 self.inputs: list[Tensor] = []
 self.backward_fn: BackwardFn | None = None
 ...
...

Atribut requires_grad adalah penanda yang menentukan apakah tensor ini perlu dihitung gradien­

nya. Tensor yang demikian, misalnya tensor bobot (weight) dan tensor bias untuk keperluan melatih

model neural network. Namun, tidak semua tensor perlu gradien, misalnya, data masukan atau skalar

konstanta.

Atribut inputs akan melacak daftar masukan dari suatu operasi. Misal, pada c = a + b , c.inputs

akan berisi [a, b] . Pada operasi y = exp(x) , y.input akan berisi [x] . Seperti yang kita ulas di bab

sebelumnya, penting bagi kita untuk melacak riwayat masukan dari satu operasi ke operasi lain untuk

implementasi autodiff, khususnya autodiff eksak.

Atribut backward_fn mengimplementasikan prosedur penghitungan gradien untuk tensor-ten­

sor yang menjadi masukan tensor ini. Misalnya, jika tensor ini hasil dari a + b , maka backward_fn

tahu cara mendistribusikan gradien ke a dan b . Jika tensor ini hasil dari a * b , maka backward_fn

tahu harus mengalikan gradien dengan pasangan yang sesuai (a.grad dikalikan nilai b.data , gradien

b.grad dikalikan nilai a.data)

2.3.1.3. Metode dan Fungsi Bantuan

Metode shape hanya syntactic sugar yang memudahkan akses ke informasi bentuk larik NumPy yang

mendasarinya. Dengan ini, untuk mengakses shape dari data, kita cukup memanggil tensor.shape

alih-alih tensor.data.shape .

Fungsi _ensure_numpy_ bertugas mengonversi masukan apapun menjadi larik NumPy. Ini memu­

ngkinkan fleksibilitas dalam membuat tensor:

Semua ini valid:
t1 = Tensor(5) # Dari skalar
t2 = Tensor([1, 2, 3]) # Dari larik Python biasa
t4 = Tensor([[1, 2], [3, 4]]) # Dari larik Python bersarang
t3 = Tensor(np.eye(3)) # Dari larik NumPy

20 IMPLEMENTASI TENSOR DAN PENGHITUNGAN TURUNAN OTOMATIS (AUTODIFF)

Metode set_requires_grad mengalokasikan atau mendealokasikan buffer gradien. Jika argumen

bernilai True , alokasikan grad dengan zeros (siap diakumulasi) dan atur requires_grad menjadi

True . Sebaliknya, atur grad menjadi None dan requires_grad menjadi False .

Metode repr adalah fungsi kenyamanan saja untuk memperoleh representasi str yang infor­

matif, terutama saat kita mencetak nilai tensor di layar. Implementasi lengkap biasanya menampilkan

data dan status gradien

Catatan

Pembaca dibebaskan untuk menentukan struktur proyek pustaka ini. Penulis berasumsi

pembaca telah familiar dengan struktur kode proyek python. Kode referensi buku ini sendiri

mengacu pada rekomendasi pustaka uv 4 yang menggunakan pyproject untuk manajemen

dependency. Secara garis besar (tanpa mengulasnya kembali di bagian-bagian selanjutnya),

berikut ini struktur implementasi referensi:

lantern/
├── examples/
│ └── linear_regression/
│ └── main.py
├── lantern/
│ ├── __init__.py
│ ├── tensor.py
│ ├── ...
│ ├── ...
│ └── nn.py
├── tests/
│ ├── __init__.py
│ └── test_tensor.py
├── pyproject.toml
├── README.md
└── uv.lock

2.4. Sistem Penghitungan Turunan Otomatis

Gradien menentukan bagaimana luaran suatu fungsi berubah terhadap masukannya. Pada konteks

deep learning, nilai gradien akan menentukan seberapa banyak kita mengubah parameter pada model.

Saat melatih model neural network, gradien akan dihitung dengan mencari turunan nilai loss

terhadap parameter model (berupa NDArray pada atribut data kelas Tensor). Model deep learning

belajar dengan cara mengatur parameter-parameter di dalamnya berdasarkan seberapa besar nilai loss

yang diperolehnya. Seberapa banyak pengaturan parameter yang perlu dilakukan, ditentukan oleh

gradien. Gradien ini akan “memandu” proses pembaruan parameter sehingga parameter tersebut bisa

meminimalkan galat.

Pada konteks deep learning, kita perlu menghitung gradien fungsi loss terhadap masing-masing

parameter. Hal ini sangat tidak mungkin dilakukan secara manual satu per satu mengingat model-

model deep learning memiliki ribuan hingga jutaan parameter (bahkan miliaran untuk model-model

kiwari). Maka dari itu, kita membutuhkan suatu cara untuk menghitung gradien secara otomatis.

4https://docs.astral.sh/uv/

IMPLEMENTASI TENSOR DAN PENGHITUNGAN TURUNAN OTOMATIS (AUTODIFF) 21

https://docs.astral.sh/uv/

Di sinilah sistem autodiff berperan. Sistem autodiff menyediakan cara sistematis untuk menghi­

tung gradien eksak dengan cara memecah komputasi yang kompleks menjadi operasi-operasi

elementer yang lebih sederhana. Tiap operasi tersebut mengimplementasikan aturan penghitungan

gradiennya sendiri. Sistem autodiff kemudian mengakumulasi gradien-gradien tiap operasi untuk

menghitung gradien keseluruhan model.

Catatan

Kita bisa mengimplementasikan autodiff dalam dua cara: metode maju (forward) dan

mundur (backward). Metode maju melakukan penghitungan gradien bersamaan dengan

proses laluan maju (forward pass). Sementara itu, metode mundur melakukan laluan maju

terlebih dahulu dan “merekam” operasi-operasi yang terlibat. Kemudian, ia mempropa­

gasikan gradien ke belakang operasi yang terekam tersebut. Di buku ini penulis fokus pada

implementasi metode mundur yang juga digunakan oleh pustaka deep learning seperti

PyTorch.

Fondasi utama proses kerja autodiff adalah aturan rantai. Aturan rantai adalah metode kalkulus yang

digunakan untuk mencari turunan dari fungsi komposisi (fungsi yang dibentuk dari fungsi lain

Aturan rantai menjelaskan cara menghitung gradien melalui fungsi komposisi dengan mengalikan

turunan-turunan sepanjang alur komputasi. Sebagai contoh, jika kita memiliki untaian operasi seperti

𝑦 = ℎ(𝑔(𝑥)), aturan rantai menetapkan

𝜕𝑦
𝜕𝑥

= 𝜕𝑦
𝜕𝑢

⋅ 𝜕𝑢
𝜕𝑥

(2.1)

Di mana 𝑢 = 𝑔(𝑥). Pustaka kita akan memiliki fitur autodiff yang menerapkan prinsip aturan rantai

secara otomatis.

Contoh: Neural network sebagai fungsi komposisi

Neural network adalah contoh fungsi komposisi. Suatu neural network terdiri dari deretan

lapisan, di mana tiap lapisan merupakan suatu fungsi. Lapisan 1 menerima masukan,

melakukan transformasi (fully connected), mengumpankannya ke lapisan 2 (fungsi aktivasi),

kemudian lapisan 2 mengumpankannya ke lapisan selanjutnya, dan seterusnya. Secara

matematis, neural network 𝑛-lapis dengan masukan 𝑥 diekspresikan dengan 𝑓(𝑥) =
𝑓𝑛(𝑓𝑛−1(…𝑓1(𝑥))).

2.5. Operasi Aritmetika Sebagai Proses Konstruksi Graf

Untuk mengimplementasikan autodiff, kita perlu cara untuk melacak semua operasi yang dilakukan

pada tensor. Bayangkan kita perlu menghitung gradien secara manual untuk ekspresi matematika

yang kompleks dan perlu mengingat setiap langkah komputasi dan hubungannya. Ini tidak realistis

untuk operasi tensor yang kompleks, terutama saat mengembangkan model deep learning.

Untuk menerapkan aturan rantai pada ribuan parameter, kita perlu cara untuk: 1) melacak

urutan operasi yang dilakukan; 2) menyimpan informasi tentang bagaimana menghitung turunan

setiap operasi; dan 3) mengetahui dependensi antar operasi. Solusinya adalah dengan membangun

22 IMPLEMENTASI TENSOR DAN PENGHITUNGAN TURUNAN OTOMATIS (AUTODIFF)

graf komputasi. Setiap kali pengguna melakukan operasi aritmetika, pustaka kita merekam operasi

tersebut dalam struktur graf di belakang layar. Graf ini nantinya menjadi “peta” untuk propagasi

gradien saat laluan balik.

Mari kita amati bagaimana ekspresi matematika sederhana 𝑦 = (𝑎 + 𝑏) × 𝑐 dapat direpresen­

tasikan sebagai graf komputasi. Ekspresi ini memiliki dua operasi: penjumlahan menghasilkan nilai

antara, kemudian perkalian menghasilkan hasil akhir.

𝑎

𝑏

𝑐

+

𝑡 ×

𝑦

Gambar 1: Operasi aritmetika 𝑦 = (𝑎 + 𝑏) × 𝑐 sebagai representasi graf

Proses pembentukan graf adalah sebagai berikut:

1. Saat operasi 𝑎 + 𝑏 dilakukan:

• Tensor baru t dibuat dengan nilai a.data + b.data

• Tensor t menyimpan [a, b] pada atribut inputs

• Tensor t menyimpan fungsi untuk propagasi gradien penjumlahan

2. Saat operasi 𝑡 × 𝑐 dilakukan:

• Tensor baru (y) dibuat dengan nilai t.data * c.data

• Tensor y menyimpan [t, c] pada atribut inputs

• Tensor y menyimpan fungsi untuk propagasi gradien perkalian

Maka, graf terbentuk secara implisit melalui referensi dalam atribut inputs . Tidak perlu kelas khusus

atau struktur graf terpisah, karena graf terbentuk dalam hubungan antar tensor. Dengan fondasi ini,

kita siap mengimplementasikan operasi-operasi dasar yang akan membangun graf komputasi kita.

Catatan

Nantinya kita akan menambahkan operator overloading (__add__ , __mul__) agar aktivitas

menulis kode menjadi nyaman, dan pengguna bisa menulis a + b alih-alih menulis

add(a, b) , mul(a, b) , dan seterusnya.

2.6. Laluan Mundur

Laluan mundur adalah langkah di maka kita menghitung gradien dengan menelusuri graf dari simpul

luaran ke semua simpul masukan. Sebelum mengimplementasikannya, mari ingat kembali intuisi

di balik laluan mundur. Misalkan kita sedang menghitung turunan fungsi komposisi 𝑓(𝑔(ℎ(𝑥))).

Secara manual, kita akan:

1. Menghitung turunan terluar: 𝑓 ′(𝑔(ℎ(𝑥)))

IMPLEMENTASI TENSOR DAN PENGHITUNGAN TURUNAN OTOMATIS (AUTODIFF) 23

2. Mengalikan dengan turunan lapisan berikutnya: 𝑓 ′(𝑔(ℎ(𝑥)))𝑐 ⋅ 𝑔′(ℎ(𝑥))
3. Terus mengalikan hingga mencapai variabel awal: 𝑓 ′(𝑔(ℎ(𝑥)))𝑐 ⋅ 𝑔′(ℎ(𝑥))𝑐 ⋅ ℎ′(𝑥)

Autodiff mengotomatisasi proses ini saat laluan mundur. Gradien “mengalir” dari simpul luaran ke

simpul masukan, ujung ke ujung, dengan setiap operasi bertanggung jawab mendistribusikan gradien

yang diterimanya ke operasi-operasi pendahulunya. simpul-simpul dalam graf akan diproses dengan

urutan secara topologis.

Berikut implementasi pengurutan simpul secara topologis.

def _topo_sort(root: Tensor):
 visited: set[Tensor] = set()
 topo_order: list[Tensor] = []

 def _build(node: Tensor):
 if node not in visited:
 visited.add(node)
 if node.backward_fn is not None:
 for input in node.inputs:
 _build(input)
 topo_order.append(node)

 _build(root)
 return topo_order

Fungsi ini menggunakan depth-first search (DFS) dengan sedikit modifikasi. Alur kerjanya:

1. Mulai dari simpul akar (root, biasanya tensor nilai loss/simpul luaran paling ujung)

2. Rekursi ke masukan-masukan simpulnya (dependensi dari simpul). Untuk setiap simpul, kun­

jungi dulu semua dependensinya

3. Setelah semua dependensi dikunjungi, tambahkan simpul ke daftar simpul yang telah diproses

Hasilnya adalah daftar simpul, di mana setiap simpul diletakkan setelah simpul-simpul masukannya

(simpul yang bergantung padanya). Saat kita membalik urutan ini (reversed(topo_order)), kita men­

dapat urutan yang benar untuk propagasi gradien: dari luaran ke masukan, ujung ke ujung.

Mari kita modifikasi kelas Tensor dengan menambah metode backward dan kita telaah bagian

per bagian.

class Tensor:
 ...

 def backward(self, upstream_grad: NDArray | None = None):
 if not self.requires_grad:
 return

 if upstream_grad is None:
 upstream_grad = np.ones_like(self.data)

 self.grad = upstream_grad
 topo_order = _topo_sort(self)

24 IMPLEMENTASI TENSOR DAN PENGHITUNGAN TURUNAN OTOMATIS (AUTODIFF)

 # Akumulasi gradien
 for node in reversed(topo_order):
 if node.backward_fn is None or node.grad is None:
 continue

 inputs = node.inputs
 grads = node.backward_fn(node.grad)
 for input, input_grad in zip(inputs, grads):
 if input_grad is not None:
 input.grad += input_grad

 ...

Pada metode ini, pertama, jika tensor tidak memerlukan gradien, tidak ada yang perlu dilakukan.

 ...
 if not self.requires_grad:
 return
 ...

Kemudian, untuk kasus khusus output (biasanya nilai loss (loss)) gradien terhadap dirinya sendiri

adalah 1. Ini titik awal propagasi gradien kita.

 ...
 if upstream_grad is None:
 upstream_grad = np.ones_like(self.data)
 ...

Dengan urutan topologis terbalik kita lakukan iterasi untuk pemrosesan tiap simpul. Lompati simpul

yang tidak memiliki fungsi backward (simpul daun) atau tidak memiliki gradien. Setelahnya, kita

panggil metode backward_fn dari tiap simpul. Di sinilah “sihir” terjadi.

Metode backward_fn mengendalikan bagaimana cara menghitung gradien lokal. Ia menerima

gradien upstream (dari operasi selanjutnya) dan menghitung gradien untuk setiap masukan operasi

ini.

 ...
 # Akumulasi gradien
 for node in reversed(topo_order):
 if node.backward_fn is None or node.grad is None:
 continue

 inputs = node.inputs
 grads = node.backward_fn(node.grad)
 for input, input_grad in zip(inputs, grads):
 if input_grad is not None:
 input.grad += input_grad
 ...

IMPLEMENTASI TENSOR DAN PENGHITUNGAN TURUNAN OTOMATIS (AUTODIFF) 25

Perhatikan bagian penting ini: kita menambahkan (+=) gradien, bukan mengganti (=). Mengapa?

Karena satu tensor bisa saja digunakan di beberapa operasi, dan setiap penggunaan berkontribusi pada

gradien total.

Catatan

metode backward_fn berisi logika spesifik untuk menghitung gradien lokal setiap operasi.

Operasi-operasi akan menyimpan fungsi ini saat laluan maju. Detail implementasinya akan

kita lihat saat membahas operasi penjumlahan, perkalian, dan lainnya.

Pendalaman

Dengan jumlah simpul (tensor) 𝑉 dan jumlah koneksi 𝐸, kompleksitas waktu laluan

mundur kita adalah 𝑂(𝑉 + 𝐸) karena tiap simpul dan koneksi dikunjungi tepat satu kali.

Kompleksitas memori prosedur ini 𝑂(𝑉) untuk menyimpan urutan topologis, namun tidak

terlalu nampak karena jauh didominasi oleh penyimpanan tensor-tensor pada keseluruhan

operasi.

2.7. Implementasi Operasi Pertama: Penjumlahan

Dengan infrastruktur laluan balik yang sudah siap, mari implementasikan operasi pertama: penjumla­

han (add). Fungsi add mengimplementasikan laluan maju dan mundur untuk operasi penjumlahan.

def add(a: Tensor, b: Tensor) -> Tensor:
 def backward_fn(upstream_grad: NDArray):
 a_grad = upstream_grad if a.requires_grad else None
 b_grad = upstream_grad if b.requires_grad else None
 return [a_grad, b_grad]

 result = Tensor(a.data + b.data, requires_grad=a.requires_grad or b.requires_grad)
 result.backward_fn = backward_fn
 result.inputs = [a, b]
 return result

Perhatikan bahwa hasil akan melacak gradien (requires_grad=True) jika salah satu masukannya mela­

cak gradien. Hal ini memastikan gradien bisa mengalir mundur melalui operasi ini jika diperlukan.

Operasi add ditunjukkan oleh Gambar 2, dengan simpul bergaris putus-putus yang merupakan

kemungkinan simpul selanjutnya.

𝑎

𝑏

+
𝑐

𝑦

Gambar 2: Representasi simpul penjumlahan

26 IMPLEMENTASI TENSOR DAN PENGHITUNGAN TURUNAN OTOMATIS (AUTODIFF)

𝜕𝑦
𝜕𝑎

= 𝜕𝑦
𝜕𝑐

⋅ 𝜕𝑐
𝜕𝑎

= 𝜕𝑦
𝜕𝑐

⋅ 𝜕(𝑎 + 𝑏)
𝜕𝑎

= 𝜕𝑦
𝜕𝑐

(→ gradien upstream)

(2.2)

dan untuk b.grad :

𝜕𝑦
𝜕𝑏

= 𝜕𝑦
𝜕𝑐

⋅ 𝜕𝑐
𝜕𝑏

= 𝜕𝑦
𝜕𝑐

⋅ 𝜕(𝑎 + 𝑏)
𝜕𝑏

= 𝜕𝑦
𝜕𝑐

(→ gradien upstream)

(2.3)

Dari dua persamaan di atas, kita tahu bahwa turunan penjumlahan selalu 1. Di implementasinya, ini

berarti backward_fn cukup meneruskan upstream_grad langsung ke kedua input. Variabel kembalian

a_grad akan menjadi gradien lokal untuk tensor masukan a , begitu juga variabel kembalian b . Saat

pemanggilan backward() , a_grad akan diakumulasikan dengan a.grad .

Catatan

Biasanya, dalam pengembangan model deep learning, kita akan bekerja dengan Tensor

dengan data internal yang memiliki beberapa nilai sekaligus. Di situasi ini, semua gradien

dari output terhadap masing-masing nilai akan dihitung juga sekaligus. Misal, untuk operasi

penjumlahan tensor peringkat dua (matriks) 𝐀 ∈ ℝ2×2 dan 𝐁 ∈ ℝ2×2 dengan ∀𝑎𝑖𝑗 ∈ 𝐀

dan ∀𝑏𝑖𝑗 ∈ 𝐁 kita memperoleh

𝐘 = 𝐀 + 𝐁

= (𝑎11
𝑎21

𝑎12
𝑎22

) + (𝑏11
𝑏21

𝑏12
𝑏22

)

= (𝑎11 + 𝑏11
𝑎21 + 𝑏21

𝑎12 + 𝑏12
𝑎22 + 𝑏22

)

(2.4)

dengan ∀𝑦𝑖𝑗 ∈ 𝐘. Jika kita ingin mencari gradien seluruh elemen 𝐘 terhadap seluruh

elemen 𝐀 yang saling berkorespondensi, maka karena setiap elemen luaran 𝑦𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗,

kita bisa memperoleh
𝜕𝑦𝑖𝑗
𝜕𝑎𝑖𝑗

= 1. Sehingga, gradien yang dihitung untuk matriks 𝐀 adalah

matriks berukuran sama dengan 𝐀 dengan setiap elemennya bernilai 1:

IMPLEMENTASI TENSOR DAN PENGHITUNGAN TURUNAN OTOMATIS (AUTODIFF) 27

(

𝜕𝑦11
𝜕𝑎11
𝜕𝑦21
𝜕𝑎21

𝜕𝑦12
𝜕𝑎12
𝜕𝑦22
𝜕𝑎22)

 =
(

𝜕(𝑎11+𝑏11)
𝜕𝑎11

𝜕(𝑎21+𝑏21)
𝜕𝑎21

𝜕(𝑎12+𝑏12)
𝜕𝑎12

𝜕(𝑎22+𝑏22)
𝜕𝑎22)

= (1
1

1
1)

(2.5)

Perhatikan contoh dengan nilai tensor berupa larik berikut ini.

a = Tensor([1.0, 2.0, 3.0], requires_grad=True)
b = Tensor([4.0, 5.0, 6.0], requires_grad=True)
y = add(a, b)

y.backward()
print(f"{a.grad=}")
print(f"{b.grad=}")

Luaran

a.grad=array([1., 1., 1.])
b.grad=array([1., 1., 1.])

Hasilnya sesuai harapan: 𝜕𝑦
𝜕𝑎 = 1 dan 𝜕𝑦

𝜕𝑏 = 1 untuk setiap elemen.

Kita bahkan bisa melakukan operasi yang lebih kompleks, misalnya, penjumlahan tiga variabel

𝑦 = 𝑎 + 𝑏 + 𝑐. Kekuatan autodiff muncul saat kita merangkai operasi yang demikian (dan yang lebih

kompleks). Graf komputasi yang terbentuk sebagai berikut.

𝑎

𝑏

𝑐

+

𝑥 +

𝑦

Gambar 3: Representasi graf penjumlahan tiga variabel 𝑦 = 𝑎 + 𝑏 + 𝑐

Berikut ini implementasinya dalam kode Python:

a = Tensor([1.0], requires_grad=True)
b = Tensor([2.0], requires_grad=True)
c = Tensor([3.0], requires_grad=True)

x = add(a, b) # a + b
y = add(x, c) # (a + b) + c

28 IMPLEMENTASI TENSOR DAN PENGHITUNGAN TURUNAN OTOMATIS (AUTODIFF)

y.backward()
print(f"{a.grad=}")
print(f"{b.grad=}")
print(f"{c.grad=}")

dengan luaran berikut ini:

Luaran

a.grad=array([1.])
b.grad=array([1.])
c.grad=array([1.])

Gradien mengalir dari 𝑦 ke 𝑥 dan 𝑐, kemudian dari 𝑥 ke 𝑎 dan 𝑏. Setiap variabel menerima gradien 1,

sesuai dengan turunan penjumlahan.

Hal menarik terjadi saat variabel yang sama muncul beberapa kali dalam komputasi. Perhatikan

contoh di bawah.

Contoh: Penggunaan variabel berulang

Diberikan 𝑦 = 𝑎 + 𝑎 + 𝑎 dengan representasi graf beserta kodenya di bawah ini.

𝑎

+

𝑦+

𝑥
Gambar 4: Representasi graf penggunaan variabel berulang 𝑦 = 𝑎 + 𝑎 + 𝑎

a = Tensor([2.0], requires_grad=True)
x = add(a, a) # a + a
y = add(x, a) # (a + a) + a

Tentu saja kita bisa menulis y=add(add(a, a), a). Namun, untuk mempermudah
penjelasan
dan visualisasi, penulis menggunakan variabel perantara `x`.

result.backward()
print(f"{a.grad=}")

Luaran

a.grad=array([3.])

Kita memperoleh jawaban yang benar!

Secara matematis, mudah saja kita memahami mengapa a.grad bernilai 3. Seperti kita ketahui, a.grad

merepresentasikan 𝜕𝑦
𝜕𝑎 , yang berarti

IMPLEMENTASI TENSOR DAN PENGHITUNGAN TURUNAN OTOMATIS (AUTODIFF) 29

𝜕𝑦
𝜕𝑎

= 𝜕(𝑎 + 𝑎 + 𝑎)
𝜕𝑎

= 𝜕(3𝑎)
𝜕𝑎

= 3

(2.6)

Mudah pula untuk kita memahami dengan pendekatan graf komputasi. Jika kita perhatikan

Gambar 4, simpul 𝑎 terkoneksi ke simpul luaran 𝑦 melalui tiga jalur berbeda dalam graf komputasi.

Jalur pertama adalah 𝑎 → 𝑦 (langsung menuju simpul luaran), jalur kedua adalah 𝑎 → 𝑥 → 𝑦, dan

jalur ketiga adalah 𝑎 → 𝑥 → 𝑦 namun dengan koneksi yang berbeda dari 𝑎 ke 𝑥.

1. Jalur langsung 𝑎 → 𝑦 memberi kontribusi gradien 1

2. Jalur 𝑎 → 𝑥 → 𝑦, dengan tepi 𝑎 → 𝑥 yang pertama, memberi kontribusi gradien 1

3. Jalur 𝑎 → 𝑥 → 𝑦, dengan tepi 𝑎 → 𝑥 yang kedua, memberi kontribusi gradien 1

Jika dijumlahkan seluruhnya, 1 + 1 + 1 = 3, yang konsisten dengan 𝜕(3𝑎)
𝜕𝑎 = 3 Contoh di atas

adalah alasan mengapa kode kita menggunakan operator penetapan-penjumlahan (+=) pada fungsi

add_backward (dan juga di fungsi lainnya nanti). Jika kita menggunakan operator penetap biasa (=)

alih-alih += , gradien awal akan ditimpa oleh gradien yang diperoleh dari jalur lain. Ini hal yang tidak

kita harapkan! Karenanya, kontribusi gradien dari tiap jalur harus diakumulasikan untuk memper­

oleh gradien keseluruhan.

Catatan

Pola akumulasi gradien ini akan muncul di semua operasi. Selalu gunakan += untuk memas­

tikan gradien dari berbagai jalur diakumulasikan dengan benar.

Tidak semua tensor perlu melacak gradien. Konstanta atau input yang tidak perlu dioptimasi bisa

menghemat memori:

a = Tensor([1.0, 2.0, 3.0], requires_grad=True)
b = Tensor([4.0, 5.0, 6.0]) # requires_grad=False secara default
y = add(a, b)

y.backward()
print(f"{a.grad=}")
print(f"{b.grad=}")

Luaran

a.grad=array([1., 1., 1.])
b.grad=None

Salah satu keunggulan sistem autodiff adalah kemampuan membangun operasi kompleks dari

operasi yang lebih sederhana. Mari kita lihat bagaimana perkalian bisa disimulasikan menggunakan

penjumlahan berulang:

30 IMPLEMENTASI TENSOR DAN PENGHITUNGAN TURUNAN OTOMATIS (AUTODIFF)

a = Tensor([[1, 2], [3, 4]], requires_grad=True)

b = a * 8
= a + a + a ... + a (8 kali)
b = Tensor(0)
for _ in range(8):
 b = add(b, a)
b.backward()

print("a:")
print(a)
print("a.grad:")
print(a.grad)

Luaran

a:
Tensor([[1 2]
 [3 4]], requires_grad=True)
a.grad:
[[8. 8.]
 [8. 8.]]

Perhatikan bagaimana kita “membangun” operasi perkalian 𝑏 = 8𝑎 hanya dengan menggunakan

operasi penjumlahan. Sistem autodiff kita secara otomatis menangani kompleksitas ini. Setiap iterasi

menambahkan jalur baru dalam graf komputasi, dan semua kontribusi gradien terakumulasi dengan

benar. Hasilnya, gradien a adalah 8, persis seperti yang kita harapkan dari 𝜕(8𝑎)
𝜕𝑎 = 8.

Catatan

Tentu saja, pada praktiknya kita akan mengimplementasikan operasi perkalian yang lebih

layak di bab selanjutnya yang jauh lebih efisien daripada penjumlahan iteratif. Namun

contoh ini menunjukkan prinsip penting bahwa operasi kompleks bisa dibangun dari operasi

sederhana, dan sistem autodiff akan menghitung gradien dengan benar selama setiap operasi

dasar mengimplementasikan aturan gradiennya dengan tepat.

Prinsip komposisi ini adalah fondasi deep learning modern. Lapisan neural network yang kompleks

sekalipun pada dasarnya adalah komposisi dari operasi-operasi elementer seperti penjumlahan,

perkalian, dan fungsi aktivasi.

2.8. Fitur penunjang kenyamanan

Bermatematika dalam kode akan lebih mudah bila kita bisa menulis dengan alami, seperti halnya

menulis persamaan di atas kertas. Python membolehkan kita untuk melakukan operator overloading,

sehingga alih-alih menulis y = add(add(a, b), c) kita bisa menulis y = a + b + c (notasi infiks). Kelas

Tensor bisa dimodifikasi.

class Tensor:

IMPLEMENTASI TENSOR DAN PENGHITUNGAN TURUNAN OTOMATIS (AUTODIFF) 31

 ...

 def __repr__(self) -> str:
 return self.data.__repr__()

 def __add__(self, other):
 return add(self, other)

 def __radd__(self, other):
 other = _ensure_tensor(other)
 return add(other, self)

def _ensure_tensor(value: Any) -> Tensor:
 if isinstance(value, Tensor):
 return value
 try:
 value = Tensor(value)
 return value
 except Exception:
 raise ValueError(f"Cannot convert value to Tensor: {value}")

Sekarang sekarang kita bisa melakukan ini:

a = Tensor([1], requires_grad=True)
y = a + a + a

y.backward()
print(a.grad)

Luaran

[3]

Di bab selanjutnya kita akan mengimplementasikan hal serupa untuk operator lain seperti sub , mul ,

dan lainnya.

32 IMPLEMENTASI TENSOR DAN PENGHITUNGAN TURUNAN OTOMATIS (AUTODIFF)

Bab 3. Operasi Tensor

Pada bab sebelumnya, kita telah membangun fondasi sistem autodiff dengan kelas Tensor dan operasi

penjumlahan sederhana. Namun, implementasi kita masih memiliki kelemahan fundamental, salah

satunya, ketidakmampuan menangani broadcasting dengan benar saat menghitung gradien. Bab ini

akan memperbaiki kelemahan tersebut dan memperluas pustaka kita dengan berbagai operasi tensor

yang penting untuk deep learning.

3.1. Menangani Broadcasting untuk Operasi Biner Per Elemen

(Element-Wise Binary Operation)

Broadcasting adalah seperangkat aturan dalam melakukan operasi larik multidimensi dengan bentuk

berbeda. Ide utamanya adalah, larik yang kecil akan dibentangkan (seolah direplikasi) agar bentuknya

menyesuaikan larik yang lebih besar. Secara konseptual, broadcasting bekerja dengan “menggan­

dakan” tensor yang lebih kecil hingga bentuknya kompatibel dengan tensor yang lebih besar. Pustaka

NumPy sudah menangani broadcasting. Contoh:

import numpy as np
a = np.array([1.0, 2.0, 3.0])
b = 2.0
print(a * b)

Luaran

array([2., 4., 6.])

Jika diilustrasikan, hal ini yang seolah terjadi:

1 2 3 × 2 2 2 = 2 4 6

Gambar 5: Ilustrasi perkalian dua larik berbeda bentuk dengan mekanisme broadcasting. Larik b akan digandakan

hingga memiliki bentuk kompatibel dengan a

Contoh lain broadcasting untuk larik dimensi dua dan satu, di mana larik salah satunya (secara

konseptual) digandakan sepanjang dimensi baris, dan diilustrasikan oleh Gambar 6:

a = np.array([[1,2,3], [4,5,6], [7,8,9]])
b = np.array([1,2,3])
print(a + b)

Luaran

array([[2, 4, 6],
 [5, 7, 9],
 [8, 10, 12]])

33

1 2 3

4 5 6

7 8 9

+

1 2 3

1 2 3

1 2 3

=

2 4 6

5 7 9

8 10 12

Gambar 6: Larik b akan digandakan sepanjang dimensi baris hingga memiliki bentuk kompatibel dengan a

Catatan

Pembentangan yang nampak seperti replikasi ini sebetulnya konseptual saja. Implementasi

NumPy dalam bahasa C sangat efisien, sehingga tidak ada proses copy data eksak yang terjadi

di memori.

3.1.1. Kelemahan Implementasi Kita

Operasi penjumlahan yang kita implementasikan di Bab 2 sudah dapat menangani broadcasting

untuk laluan maju karena NumPy menanganinya secara otomatis. Namun, ada masalah krusial pada

saat laluan mundur. Perhatikan contoh berikut:

Contoh: Galat operasi tanpa penanganan broadcasting

Menggunakan implementasi add dari Bab 2 (tanpa unbroadcast)
a = Tensor([[1, 2, 3], [4, 5, 6]], requires_grad=True) # Shape: (2, 3)
b = Tensor([10, 20, 30], requires_grad=True) # Shape: (3,)

c = add(a, b) # c = [[11, 22, 33], [14, 25, 36]], shape: (2, 3)

Lihat apa yang terjadi saat backward
c.backward() # upstream_grad di sini berbentuk (2, 3)

Luaran

ValueError: non-broadcastable output operand with shape (3,) doesn't
match the broadcast shape (2,3)

Galat ini terjadi karena kita mencoba menambahkan larik gradien upstream berbentuk

(2, 3) (upstream_grad) ke b.grad yang berbentuk (3,) . NumPy tidak bisa melakukan

operasi ini karena aturan broadcasting tidak berlaku untuk operasi += ketika operand kiri

memiliki bentuk yang tidak kompatibel.

Perhatikan implementasi kita yang masih naif:

def add(a: Tensor, b: Tensor) -> Tensor:
 def backward_fn(upstream_grad: NDArray):
 a_grad = upstream_grad if a.requires_grad else None # a_grad.shape: (2, 3)
 b_grad = upstream_grad if b.requires_grad else None # b_grad.shape: (2, 3)
 return [a_grad, b_grad]

34 OPER ASI TENSOR

 ...
...

Untuk contoh di atas, saat pemanggilan backward (yang juga mengeksekusi backward_fn), a_grad

memiliki bentuk (2, 3), begitu pun b_grad karena berasal dari c.grad mula-mula yang juga beruku­

ran (2, 3). Saat tahapan akumulasi gradien:

 def backward(self, upstream_grad: NDArray | None = None):
 ...

 # Akumulasi gradien
 for node in reversed(topo_order):
 ...
 for input, input_grad in zip(inputs, grads):
 if input_grad is not None:
 input.grad += input_grad # a.grad (2, 3) += a_grad (2, 3) -> OK
 # b.grad (3,) += b_grad (2, 3) -> ERROR

Saat akumulasi a.grad += a_grad , tak ada masalah dengan kompatibilitas bentuk. Namun, saat aku­

mulasi b.grad += b_grad , terjadi inkompatibilitas bentuk yang menyebabkan run time error.

Yang seharusnya terjadi adalah:

• a.grad : memiliki shape berupa (2, 3) dan dengan nilai array([[1, 1, 1], [1, 1, 1]]) , yang saat

ini sudah benar

• b.grad : memiliki shape berupa (3,) dan dengan nilai np.array([2, 2, 2]) . Saat ini implementasi

kita tidak memperoleh hasil yang seharusnya.

Mengapa b.grad seharusnya [2, 2, 2] ? Karena ketika b di-broadcast dalam operasi maju:

• b[0] = 10 berkontribusi bagi luaran di posisi c[0,0] dan c[1,0]

• b[1] = 20 berkontribusi bagi luaran di posisi c[0,1] dan c[1,1]

• b[2] = 30 berkontribusi bagi luaran di posisi c[0,2] dan c[1,2]

Maka, gradien untuk setiap elemen b seharusnya adalah jumlah gradien dari semua posisi di mana

elemen tersebut digunakan:

b_grad[0] = c_grad[0,0] + c_grad[1,0] = 1 + 1 = 2
b_grad[1] = c_grad[0,1] + c_grad[1,1] = 1 + 1 = 2
b_grad[2] = c_grad[0,2] + c_grad[1,2] = 1 + 1 = 2

Solusi permasalahan ini adalah dengan “membalik” efek broadcasting pada gradien. Jika suatu

tensor di-broadcast selama laluan maju, gradiennya harus dijumlahkan sepanjang dimensi yang

di-broadcast selama operasi laluan mundur sehingga memiliki dimensi yang sesuai dengan data

tensornya.

3.1.2. Membalik Efek Broadcasting dengan “Unbroadcasting”

Ketika tensor di-broadcast selama laluan maju, ada dua kemungkinan transformasi yang terjadi:

OPER ASI TENSOR 35

1. Penambahan dimensi baru: Tensor dengan dimensi lebih sedikit mendapat dimensi tambahan di

sebelah kiri

2. Pembentangan dimensi singleton: Dimensi berukuran 1 dibentangkan menjadi lebih besar

Masalah ini bisa diatasi dengan mengimplementasikan fungsi _unbroadcast_grad . Fungsi ini bertugas

“membalik” efek broadcasting yang terjadi selama laluan maju dengan menjumlahkan gradien sepan­

jang dimensi-dimensi yang di-broadcast.

def _unbroadcast_grad(grad: NDArray, shape: tuple[int, ...]) -> NDArray:
 # Kasus 1: Menangani perbedaan jumlah dimensi
 # Jika grad memiliki lebih banyak dimensi, jumlahkan dimensi tambahan
 ndim_add = grad.ndim - len(shape)
 for _ in range(ndim_add):
 grad = grad.sum(axis=0)

 # Kasus 2: Menangani dimensi singleton (berukuran 1)
 # Jumlahkan sepanjang dimensi yang di-broadcast dari 1
 for i, dim in enumerate(shape):
 if dim == 1:
 grad = grad.sum(axis=i, keepdims=True)

 # Atribut `grad.shape` sekarang sudah sesuai dengan nilai argumen `shape`
 return grad

Fungsi _unbroadcast_grad di atas dapat menangani semua kasus broadcasting dengan hanya beberapa

baris kode.

3.2. Pemutakhiran Fungsi Penjumlahan

Dengan fungsi _unbroadcast_grad , kita dapat memperbaiki implementasi operasi penjumlahan:

def add(a: Tensor, b: Tensor) -> Tensor:
 def backward_fn(upstream_grad: NDArray):
 # Penyesuaian upstream_grad terhadap bentuk a.grad sebelum akumulasi
 a_grad = _unbroadcast_grad(
 upstream_grad, a.shape
) if a.requires_grad else None
 # Penyesuaian upstream_grad terhadap bentuk b.grad sebelum akumulasi
 b_grad = _unbroadcast_grad(
 upstream_grad, b.shape
) if b.requires_grad else None
 return [a_grad, b_grad]

 result = Tensor(a.data + b.data, requires_grad=a.requires_grad or b.requires_grad)
 result.backward_fn = backward_fn
 result.inputs = [a, b]
 return result

Mari kita uji implementasi yang telah diperbaiki dengan berbagai contoh kasus.

36 OPER ASI TENSOR

Contoh: Penjumlahan tanpa broadcasting

a = Tensor([[1, 2], [3, 4]], requires_grad=True)
b = Tensor([[5, 6], [7, 8]], requires_grad=True)

c = add(a, b) # [[6, 8], [10, 12]]
c.backward()

print(f"a.grad:\n{a.grad}")
print(f"b.grad:\n{b.grad}")

Luaran

a.grad:
[[1. 1.]
 [1. 1.]]
b.grad:
[[1. 1.]
 [1. 1.]]

Tanpa broadcasting, gradien langsung diteruskan tanpa perubahan.

Contoh: Broadcasting vektor ke matriks

Skenario ini cukup umum terjadi di neural network saat menambahkan vektor bias ke hasil

transformasi linier. Anggap a adalah tensor hasil perkalian matriks masukan dan matriks

bobot.

a = Tensor([[1, 2, 3], [4, 5, 6]], requires_grad=True) # (2, 3)
b = Tensor([10, 20, 30], requires_grad=True) # (3,)

c = add(a, b) # [[11, 22, 33], [14, 25, 36]]
c.backward()

print(f"a.grad:\n{a.grad}")
print(f"b.grad: {b.grad}")

Luaran

a.grad:
[[1. 1. 1.]
 [1. 1. 1.]]
b.grad: [2. 2. 2.]

Sekarang gradien b sudah dijumlahkan sepanjang dimensi yang di-broadcast dengan benar .

Contoh: Broadcasting skalar

OPER ASI TENSOR 37

a = Tensor([[1.0, 2.0], [3.0, 4.0]], requires_grad=True) # (2, 2)
b = Tensor(10.0, requires_grad=True) # skalar

c = add(a, b) # [[11, 12], [13, 14]]
c.backward()

print(f"a.grad:\n{a.grad}")
print(f"b.grad: {b.grad}")

Luaran

a.grad:
[[1. 1.]
 [1. 1.]]
b.grad: 4.0

Skalar b digunakan 4 kali (untuk setiap elemen matriks 2×2) sehingga gradiennya adalah 4.

3.3. Implementasi Beberapa Operasi Biner Per Elemen Lainnya

Untuk selanjutnya, asumsikan 𝑦 = 𝑔(𝑓(𝑎, 𝑏)), di mana 𝑓 akan diimplementasikan sebagai operasi

biner yang dibahas di sub-bab berikut ini dan 𝑔 merupakan fungsi yang bergantung pada 𝑓 (yaitu,

kemungkinan simpul operasi selanjutnya setelah 𝑓).

3.3.1. Pengurangan

Pengurangan adalah penjumlahan dengan operand kanan ternegasi: 𝑓(𝑎, 𝑏) = 𝑎 − 𝑏 = 𝑎 + (−𝑏).

Implementasinya mirip dengan operasi penjumlahan di mana turunan-turunannya adalah

𝜕𝑦
𝜕𝑎

= 𝜕(𝑎 − 𝑏)
𝜕𝑎

⋅ 𝜕𝑦
𝜕𝑐

= 𝜕𝑦
𝜕𝑐

(3.1)

dan

𝜕𝑦
𝜕𝑏

= 𝜕(𝑎 − 𝑏)
𝜕𝑏

⋅ 𝜕𝑦
𝜕𝑐

= −𝜕𝑦
𝜕𝑐

(3.2)

Bedanya ada pada operator negasi untuk b_grad .

def sub(a: Tensor, b: Tensor) -> Tensor:
 def backward_fn(upstream_grad: NDArray):
 a_grad = _unbroadcast_grad(
 upstream_grad, a.shape
) if a.requires_grad else None
 b_grad = -_unbroadcast_grad(
 upstream_grad, b.shape
) if b.requires_grad else None
 return [a_grad, b_grad]

38 OPER ASI TENSOR

 result = Tensor(a.data - b.data, requires_grad=a.requires_grad or b.requires_grad)
 result.backward_fn = backward_fn
 result.inputs = [a, b]
 return result

3.3.2. Perkalian

Untuk 𝑓(𝑎, 𝑏) = 𝑎 ⋅ 𝑏,

𝜕𝑦
𝜕𝑎

= 𝜕(𝑎 ⋅ 𝑏)
𝜕𝑎

⋅ 𝜕𝑦
𝜕𝑐

= 𝑏 ⋅ 𝜕𝑦
𝜕𝑐

(3.3)

dan

𝜕𝑦
𝜕𝑏

= 𝜕(𝑎 ⋅ 𝑏)
𝜕𝑏

⋅ 𝜕𝑦
𝜕𝑐

= 𝑎 ⋅ 𝜕𝑦
𝜕𝑐

(3.4)

Implementasi kode:

def mul(a: Tensor, b: Tensor) -> Tensor:
 def backward_fn(upstream_grad: NDArray):
 a_grad = (
 _unbroadcast_grad(b.data * upstream_grad, a.shape)
 if a.requires_grad
 else None
)
 b_grad = (
 _unbroadcast_grad(a.data * upstream_grad, b.shape)
 if b.requires_grad
 else None
)
 return [a_grad, b_grad]

 result = Tensor(a.data * b.data, requires_grad=a.requires_grad or b.requires_grad)
 result.backward_fn = backward_fn
 result.inputs = [a, b]
 return result

3.3.3. Pembagian

Untuk 𝑓(𝑎, 𝑏) = 𝑎
𝑏 ,

OPER ASI TENSOR 39

𝜕𝑦
𝜕𝑎

= 𝜕𝑐
𝜕𝑎

⋅ 𝜕𝑦
𝜕𝑐

= [𝜕
𝜕𝑎

(𝑎
𝑏
)] ⋅ 𝜕𝑦

𝜕𝑐

= 1
𝑏

⋅ 𝜕𝑦
𝜕𝑐

(3.5)

dan

𝜕𝑦
𝜕𝑏

= 𝜕𝑐
𝜕𝑏

⋅ 𝜕𝑦
𝜕𝑐

= [𝜕
𝜕𝑏

(𝑎
𝑏
)] ⋅ 𝜕𝑦

𝜕𝑐

= 𝑎 ⋅ (−𝑏−2) ⋅ 𝜕𝑦
𝜕𝑐

= − 𝑎
𝑏2 ⋅ 𝜕𝑦

𝜕𝑐

(3.6)

Implementasinya:

def div(a: Tensor, b: Tensor) -> Tensor:
 def backward_fn(upstream_grad: NDArray):
 a_grad = (
 _unbroadcast_grad(upstream_grad / b.data, a.shape)
 if a.requires_grad
 else None
)
 b_grad = (
 _unbroadcast_grad(-upstream_grad * a.data / (b.data**2), b.shape)
 if b.requires_grad
 else None
)
 return [a_grad, b_grad]

 result = Tensor(a.data / b.data, requires_grad=a.requires_grad or b.requires_grad)
 result.backward_fn = backward_fn
 result.inputs = [a, b]
 return result

3.4. Implementasi Beberapa Operasi Uner (Unary Operation)

Biasa

Untuk subbab operasi uner biasa, asumsikan 𝑦 = 𝑔(𝑓(𝑥)) dan 𝑢 = 𝑓(𝑥), di mana 𝑓(𝑥) akan

diimplementasikan sebagai operasi uner, yang dibahas di sub-bab berikut ini. Gradien upstream

dinotasikan dengan 𝑔′(𝑓(𝑥)) = 𝑑𝑦
𝑑𝑢 .

3.4.1. Negasi

Negasi adalah operasi paling sederhana: 𝑓(𝑥) = −𝑥, dengan turunan 𝑑𝑢
𝑑𝑥 = −1. Maka

40 OPER ASI TENSOR

𝑑𝑦
𝑑𝑥

= 𝑑𝑦
𝑑𝑢

𝑑𝑢
𝑑𝑥

= −𝑑𝑦
𝑑𝑢

(3.7)

def neg(x: Tensor) -> Tensor:
 x = _ensure_tensor(x)

 def backward_fn(upstream_grad: NDArray):
 x_grad = -upstream_grad if x.requires_grad else None
 return [x_grad]

 result = Tensor(-x.data, requires_grad=x.requires_grad)
 result.backward_fn = backward_fn
 result.inputs = [x]
 return result

3.4.2. Eksponensial

Fungsi eksponensial 𝑓(𝑥) = 𝑒𝑥 lazim digunakan di beragam aspek deep learning, seperti fungsi

sigmoid dan softmax. Fungsi ini memiliki sifat unik, yaitu turunannya sama dengan fungsi itu sendiri.

Maka

𝑑𝑦
𝑑𝑥

= 𝑑𝑦
𝑑𝑢

𝑒𝑥 (3.8)

dengan implementasi sebagai berikut.

def exp(x: Tensor) -> Tensor:
 x = _ensure_tensor(x)
 exp_data = np.exp(x.data)

 def backward_fn(upstream_grad: NDArray):
 x_grad = upstream_grad * exp_data if x.requires_grad else None
 return [x_grad]

 result = Tensor(exp_data, requires_grad=x.requires_grad)
 result.backward_fn = backward_fn
 result.inputs = [x]
 return result

3.4.3. Akar Kuadrat

Untuk 𝑓(𝑥) =
√

𝑥,

𝑑𝑦
𝑑𝑥

= 𝑑𝑦
𝑑𝑢

⋅ 1
2
√

𝑥
(3.9)

def sqrt(x: Tensor) -> Tensor:
 x = _ensure_tensor(x)
 sqrt_data = np.sqrt(x.data)

OPER ASI TENSOR 41

 def backward_fn(upstream_grad: NDArray):
 # d/dx sqrt(x) = 1 / (2 * sqrt(x))
 x_grad = upstream_grad * (0.5 / sqrt_data) if x.requires_grad else None
 return [x_grad]

 result = Tensor(sqrt_data, requires_grad=x.requires_grad)
 result.backward_fn = backward_fn
 result.inputs = [x]
 return result

3.4.4. Logaritma Natural

Untuk 𝑓(𝑥) = ln(𝑥),

𝑑𝑦
𝑑𝑥

= 𝑑𝑦
𝑑𝑢

⋅ 1
𝑥

= (𝑑𝑦
𝑑𝑢

)/𝑥 (3.10)

def log(x: Tensor) -> Tensor:
 x = _ensure_tensor(x)

 def backward_fn(upstream_grad: NDArray):
 x_grad = upstream_grad / x.data if x.requires_grad else None
 return [x_grad]

 result = Tensor(np.log(x.data), requires_grad=x.requires_grad)
 result.backward_fn = backward_fn
 result.inputs = [x]
 return result

3.5. Implementasi Beberapa Operasi Reduksi

Operasi reduksi mengubah tensor menjadi bentuk yang lebih kecil dengan mengagregasi nilai sepan­

jang dimensi tertentu. Tantangan utama dalam implementasi gradien untuk operasi reduksi adalah

memahami bagaimana gradien “disebarkan kembali” dari bentuk tereduksi ke bentuk asli.

Pada prinsipnya, jika laluan maju mengagregasi banyak nilai menjadi satu, maka laluan mundur

harus mendistribusikan gradien dari satu nilai ke banyak nilai yang berkontribusi.

3.5.1. Penjumlahan Total (Summation)

Operasi penjumlahan total menjumlahkan elemen tensor sepanjang dimensi tertentu. Mari kita mulai

dengan memahami mekanisme operasi ini sebelum membahas propagasi gradiennya.

Untuk tensor 𝐗 ∈ ℝ𝑚×𝑛 dengan elemen 𝑥𝑖𝑗, kita dapat melakukan penjumlahan sepanjang

dimensi berbeda. Untuk tensor rankin 2 (matriks), kita bisa melakukan penjumlahan sepanjang

kolom (mereduksi dimensi kedua):

42 OPER ASI TENSOR

𝐲 = ∑
𝑛

𝑗=1
𝐗:,𝑗 =

(

∑𝑛

𝑗=1 𝑥1𝑗

∑𝑛
𝑗=1 𝑥2𝑗

⋮
∑𝑛

𝑗=1 𝑥𝑚𝑗)

∈ ℝ𝑚 (3.11)

Perhatikan bahwa setiap elemen 𝑦𝑖 merupakan penjumlahan dari semua elemen di baris ke-𝑖:

𝑦𝑖 = 𝑥𝑖1 + 𝑥𝑖2 + ⋯ + 𝑥𝑖𝑛 = ∑
𝑛

𝑗=1
𝑥𝑖𝑗 (3.12)

Misalkan kita memiliki loss skalar ℓ yang bergantung pada 𝐲 = sum(𝐗, dim = 1). Kita ingin

menghitung 𝜕ℓ
𝜕𝑥𝑖𝑗

 untuk setiap elemen di 𝐗. Pertama, mari kita analisis kontribusi setiap elemen.

Elemen 𝑥𝑖𝑗 hanya berkontribusi pada satu elemen output, yaitu 𝑦𝑖:

𝑦𝑖 = 𝑥𝑖1 + 𝑥𝑖2 + ⋯ + 𝑥𝑖𝑗 + ⋯ + 𝑥𝑖𝑛 (3.13)

Dengan menggunakan aturan rantai:

𝜕ℓ
𝜕𝑥𝑖𝑗

= 𝜕ℓ
𝜕𝑦𝑖

⋅ 𝜕𝑦𝑖
𝜕𝑥𝑖𝑗

(3.14)

Karena 𝑦𝑖 = ∑𝑛
𝑘=1 𝑥𝑖𝑘, maka:

𝜕𝑦𝑖
𝜕𝑥𝑖𝑗

= 𝜕
𝜕𝑥𝑖𝑗

∑
𝑛

𝑘=1
𝑥𝑖𝑘 = 1 (3.15)

Sehingga:

𝜕ℓ
𝜕𝑥𝑖𝑗

= 𝜕ℓ
𝜕𝑦𝑖

⋅ 1 = 𝜕ℓ
𝜕𝑦𝑖

(3.16)

Ini menunjukkan bahwa setiap elemen di baris ke-𝑖 menerima gradien yang sama, yaitu 𝜕ℓ
𝜕𝑦𝑖

. Untuk

seluruh matriks 𝐗, gradien dapat ditulis sebagai:

𝜕ℓ
𝜕𝐗

=

(

𝜕ℓ
𝜕𝑥11
𝜕ℓ

𝜕𝑥21

⋮
𝜕ℓ

𝜕𝑥𝑚1

𝜕ℓ
𝜕𝑥12
𝜕ℓ

𝜕𝑥22

⋮
𝜕ℓ

𝜕𝑥𝑚2

…
…
⋱
…

𝜕ℓ
𝜕𝑥1𝑛
𝜕ℓ

𝜕𝑥2𝑛

⋮
𝜕ℓ

𝜕𝑥𝑚𝑛)

(3.17)

Dari derivasi sebelumnya, kita tahu bahwa 𝜕ℓ
𝜕𝑥𝑖𝑗

= 𝜕ℓ
𝜕𝑦𝑖

 untuk semua 𝑗. Dengan mensubstitusi hasil

ini:

𝜕ℓ
𝜕𝐗

=

(

𝜕ℓ
𝜕𝑦1
𝜕ℓ
𝜕𝑦2

⋮
𝜕ℓ

𝜕𝑦𝑚

𝜕ℓ
𝜕𝑦1
𝜕ℓ
𝜕𝑦2

⋮
𝜕ℓ

𝜕𝑦𝑚

…
…
⋱
…

𝜕ℓ
𝜕𝑦1
𝜕ℓ
𝜕𝑦2

⋮
𝜕ℓ

𝜕𝑦𝑚)

(3.18)

OPER ASI TENSOR 43

Contoh: Ilustrasi propagasi gradien

Misalkan 𝐗 ∈ ℝ2×3 adalah masukan dan 𝐲 ∈ ℝ2 adalah hasil penjumlahan total dari 𝐗

pada dimensi baris. Pada laluan maju dengan

𝐗 = (𝑥11
𝑥21

𝑥12
𝑥22

𝑥13
𝑥23

), (3.19)

maka

𝐲 = (𝑥11 + 𝑥12 + 𝑥13
𝑥21 + 𝑥22 + 𝑥23

). (3.20)

Pada laluan mundur, misalkan gradien upstream 𝜕ℓ
𝜕𝐲 = (𝑔1

𝑔2
). Karena dampak broadcasting,

gradien 𝑔1 “disebarkan” ke semua elemen baris pertama, dan 𝑔2 ke semua elemen baris kedua.

𝜕ℓ
𝜕𝐗

= (𝑔1
𝑔2

𝑔1
𝑔2

𝑔1
𝑔2

) (3.21)

Ketika keepdims=False (bawaan kebanyakan pustaka), dimensi yang direduksi akan hilang dari luaran.

Misalnya, masukan 𝐗 ∈ ℝ𝑚×𝑛 akan menjadi luaran 𝐲 ∈ ℝ𝑚 (bukan ℝ𝑚×1). Saat propagasi balik,

kita harus merekonstruksi dimensi yang hilang sebelum melakukan broadcasting.

def tensor_sum(
 x: Tensor, dim: int | tuple[int, ...] | None = None, keepdims: bool = False
):
 # Normalkan argumen dimensi
 if dim is None:
 dim = tuple(range(x.data.ndim))
 elif isinstance(dim, int):
 dim = (dim % x.data.ndim,)
 else:
 dim = tuple(d % x.data.ndim for d in dim)

 def backward_fn(upstream_grad: NDArray):
 reduced_axes = dim if not keepdims else ()
 if reduced_axes:
 shape = list(upstream_grad.shape)
 for axis in sorted(reduced_axes):
 shape.insert(axis, 1)
 upstream_grad = upstream_grad.reshape(shape)
 x_grad = np.broadcast_to(upstream_grad, x.shape) if x.requires_grad else None
 return [x_grad]

 result = Tensor(
 x.data.sum(axis=dim, keepdims=keepdims), requires_grad=x.requires_grad
)
 result.backward_fn = backward_fn

44 OPER ASI TENSOR

 result.inputs = [x]
 return result

3.5.2. Rataan (Mean)

Rataan adalah penjumlahan total dibagi jumlah elemen: mean(𝑥) = 1
𝑁 ∑𝑁

𝑖=1 𝑥𝑖 Turunannya

adalah

𝜕
𝜕𝑥𝑖

mean(𝑥) =
𝜕(1

𝑁 ∑𝑁
𝑖=1 𝑥𝑖)

𝜕𝑥𝑖

= 1
𝑁

(3.22)

Ini berarti gradien untuk mean adalah gradien sum dibagi dengan jumlah elemen yang dicari rataan­

nya. Perhatikan bahwa 𝑁 bergantung pada dimensi reduksi yang ditentukan:

X = [[1, 2, 3],
 [4, 5, 6]] # Shape: (2, 3)

mean(X, dim=0) = [2.5, 3.5, 4.5] # N=2 untuk setiap kolom
mean(X, dim=1) = [2, 5] # N=3 untuk setiap baris
mean(X, dim=None) = 3.5 # N=6 untuk semua elemen

Untuk mean(X, dim=1) dengan upstream_grad = [1, 1]:

• Setiap elemen di baris pertama mendapat gradien 1/3

• Setiap elemen di baris kedua mendapat gradien 1/3

Implementasinya mirip dengan sum, tetapi dengan faktor skala 1
𝑁 .

def tensor_mean(
 x: Tensor, dim: int | tuple[int, ...] | None = None, keepdims: bool = False
):
 if dim is None:
 dim = tuple(range(x.data.ndim))
 elif isinstance(dim, int):
 # Normalize single negative dimension
 dim = (dim % x.data.ndim,)
 else:
 # Normalize tuple of dimensions (including negative ones)
 dim = tuple(d % x.data.ndim for d in dim)

 result = Tensor(
 x.data.mean(axis=dim, keepdims=keepdims), requires_grad=x.requires_grad
)

 def backward_fn(upstream_grad: NDArray):
 # Calculate how many elements were averaged
 n_elements = 1
 for axis in dim:
 n_elements *= x.shape[axis]

OPER ASI TENSOR 45

 reduced_axes = dim if not keepdims else ()
 if reduced_axes:
 shape = list(upstream_grad.shape)
 for axis in sorted(reduced_axes):
 shape.insert(axis, 1)
 upstream_grad = upstream_grad.reshape(shape)

 upstream_grad = upstream_grad / n_elements
 x_grad = np.broadcast_to(upstream_grad, x.shape) if x.requires_grad else None
 return [x_grad]

 result.backward_fn = backward_fn
 result.inputs = [x]
 return result

3.5.3. Maksimum (Max) dan Minimum (Min)

Max:

def tensor_max(
 x: Tensor, dim: int | tuple[int, ...] | None = None, keepdims: bool = False
):
 if dim is None:
 dim = tuple(range(x.data.ndim))
 elif isinstance(dim, int):
 # Normalize single negative dimension
 dim = (dim % x.data.ndim,)
 else:
 # Normalize tuple of dimensions (including negative ones)
 dim = tuple(d % x.data.ndim for d in dim)

 result_data = x.data.max(axis=dim, keepdims=keepdims)
 result = Tensor(result_data, requires_grad=x.requires_grad)

 def backward_fn(upstream_grad: NDArray):
 # Create mask where max values are
 expanded_result = result_data
 reduced_axes = dim if not keepdims else ()
 if reduced_axes:
 shape = list(expanded_result.shape)
 for axis in sorted(reduced_axes):
 shape.insert(axis, 1)
 expanded_result = expanded_result.reshape(shape)

 # Mask is 1 where x equals the max value
 mask = (x.data == expanded_result).astype(x.data.dtype)

 # Count how many times each max appears (for tie-breaking)
 normalizer = mask.sum(axis=dim, keepdims=True)
 mask = mask / normalizer

46 OPER ASI TENSOR

 # Expand upstream gradient
 if reduced_axes:
 shape = list(upstream_grad.shape)
 for axis in sorted(reduced_axes):
 shape.insert(axis, 1)
 upstream_grad = upstream_grad.reshape(shape)

 x_grad = mask * upstream_grad if x.requires_grad else None
 return [x_grad]

 result.backward_fn = backward_fn
 result.inputs = [x]
 return result

Min:

def tensor_min(
 x: Tensor, dim: int | tuple[int, ...] | None = None, keepdims: bool = False
):
 if dim is None:
 dim = tuple(range(x.data.ndim))
 elif isinstance(dim, int):
 # Normalize single negative dimension
 dim = (dim % x.data.ndim,)
 else:
 # Normalize tuple of dimensions (including negative ones)
 dim = tuple(d % x.data.ndim for d in dim)

 result_data = x.data.min(axis=dim, keepdims=keepdims)
 result = Tensor(result_data, requires_grad=x.requires_grad)

 def backward_fn(upstream_grad: NDArray):
 # Create mask where min values are
 expanded_result = result_data
 reduced_axes = dim if not keepdims else ()
 if reduced_axes:
 shape = list(expanded_result.shape)
 for axis in sorted(reduced_axes):
 shape.insert(axis, 1)
 expanded_result = expanded_result.reshape(shape)

 # Mask is 1 where x equals the min value
 mask = (x.data == expanded_result).astype(x.data.dtype)

 # Count how many times each min appears (for tie-breaking)
 normalizer = mask.sum(axis=dim, keepdims=True)
 mask = mask / normalizer

 # Expand upstream gradient

OPER ASI TENSOR 47

 if reduced_axes:
 shape = list(upstream_grad.shape)
 for axis in sorted(reduced_axes):
 shape.insert(axis, 1)
 upstream_grad = upstream_grad.reshape(shape)

 x_grad = mask * upstream_grad if x.requires_grad else None
 return [x_grad]

 result.backward_fn = backward_fn
 result.inputs = [x]
 return result

3.6. Implementasi Beberapa Fungsi Aktivasi

3.6.1. ReLU

def relu(x: Tensor) -> Tensor:
 def backward_fn(upstream_grad: NDArray):
 x_grad = upstream_grad * (x.data > 0) if x.requires_grad else None
 return [x_grad]

 result = Tensor(np.maximum(x.data, 0), requires_grad=x.requires_grad)
 result.backward_fn = backward_fn
 result.inputs = [x]
 return result

3.6.2. Sigmoid

def sigmoid(x: Tensor) -> Tensor:
 # sigmoid(x) = 1 / (1 + exp(-x))
 sig_data = 1 / (1 + np.exp(-x.data))

 def backward_fn(upstream_grad: NDArray):
 # d/dx sigmoid(x) = sigmoid(x) * (1 - sigmoid(x))
 x_grad = upstream_grad * sig_data * (1 - sig_data) if x.requires_grad else
None
 return [x_grad]

 result = Tensor(sig_data, requires_grad=x.requires_grad)
 result.backward_fn = backward_fn
 result.inputs = [x]
 return result

3.6.3. Tanh

def tanh(x: Tensor) -> Tensor:
 tanh_x = np.tanh(x.data)
 def backward_fn(upstream_grad: NDArray) -> list[NDArray | None]:
 # d/dx tanh(x) = 1 - tanh(x)^2

48 OPER ASI TENSOR

 x_grad = upstream_grad * (1 - tanh_x**2) if x.requires_grad else None
 return [x_grad]

 result = Tensor(tanh_x, requires_grad=x.requires_grad)
 result.backward_fn = backward_fn
 result.inputs = [x]

 return result

3.7. Softmax

Softmax biasanya digunakan di lapisan terakhir model neural network untuk memperoleh luaran

ternormalisasi yang jumlah totalnya 1, sehingga bisa diinterpretasikan sebagai distribusi probabilitas.

Beberapa arsitektur modern seperti transformer juga menggunakannya untuk mekanisme attention.

Misal kita memiliki rangkap (tuple) 𝐳 = (𝑧1,…, 𝑧𝐾) ∈ ℝ𝐾 , misalnya, logits kotor atau luaran lapisan

terakhir suatu model neural network. Softmax dihitung dengan

softmax(𝐳) = 𝑒𝑧𝑖

∑𝐾
𝑖=1 𝑒𝑧𝑖

(3.23)

Dengan operasi-operasi yang sudah kita implementasikan sebelumnya, mudah saja kita implemen­

tasikan operasi softmax.

def softmax(x, dim=-1):
 numerator = exp(x)
 return numerator / tensor_sum(numerator, dim, keepdims=True)

Namun implementasi di atas memiliki kelemahan, yaitu instabilitas numerik. Saat nilai masukan

(misal, dari logit) memiliki nilai yang sangat besar atau sangat kecil. Saat masukan bernilai sangat

besar, mendekati tak hingga, akan terjadi overflow, di mana fungsi eksponensial akan mengembalikan

np.inf .

Solusinya, kita bisa mengimplementasikan versi stabil dari softmax.

def softmax(x: Tensor, dim: int = -1) -> Tensor:
 # Normalisasi dimensi
 dim = dim % x.data.ndim

 # Kurangkan nilai terbesar maksimal untuk stabilitas numerik
 x_max = tensor_max(x, dim=dim, keepdims=True)
 x_shifted = x - x_max

 # Softmax
 exp_x = exp(x_shifted)
 sum_exp = tensor_sum(exp_x, dim=dim, keepdims=True)
 return exp_x / sum_exp

Pendalaman

OPER ASI TENSOR 49

Walau stabil, softmax masih menyisakan kelemahan, yaitu overconfidence. Nilai masukan

yang tinggi cenderung mendominasi distribusi probabilitas, walaupun kenyataannya model

bersifat uncertain. Untuk menanggulanginya, kita bisa menggunakan pengembangannya,

yaitu softmax dalam bentuk logaritmik, atau log-softmax.

def log_softmax(x: Tensor, dim: int = -1) -> Tensor:
 dim = dim % x.data.ndim

 # stabilitas numerik
 x_max = tensor_max(x, dim=dim, keepdims=True)
 x_shifted = x - x_max

 # log(softmax(x)) = x - max(x) - log(sum(exp(x - max(x))))
 exp_shifted = exp(x_shifted)
 sum_exp = tensor_sum(exp_shifted, dim=dim, keepdims=True)
 log_sum_exp = log(sum_exp)

 return x_shifted - log_sum_exp

3.8. Implementasi Operasi Perkalian Matriks

Perkalian matriks (tensor ranking 2) mungkin adalah salah satu operasi paling penting dalam deep

learning. Laluan maju operasi ini mudah saja dan sudah didukung oleh NumPy. Ekspresi penghi­

tungan gradien pada laluan mundurnya juga sederhana, hanya melibatkan sedikit perkalian matriks

dan transposisi yang melibatkan gradien upstream:

def matmul(a: Tensor, b: Tensor) -> Tensor:
 def backward_fn(upstream_grad: NDArray):
 a_grad = upstream_grad @ b.data.T if a.requires_grad else None
 b_grad = a.data.T @ upstream_grad if b.requires_grad else None
 return [a_grad, b_grad]

 result = Tensor(a.data @ b.data, requires_grad=a.requires_grad or b.requires_grad)
 result.backward_fn = backward_fn
 result.inputs = [a, b]
 return result

Kendati mudah dalam kode, perlu kita cermati pemahaman konseptual di balik implementasinya.

Ingat kembali dasar perkalian matriks. Untuk matriks 𝐀 ∈ ℝ𝑚×𝑛 dan 𝐁 ∈ ℝ𝑛×𝑝, hasil

perkalian 𝐂 = 𝐀𝐁 adalah matriks berukuran 𝑚 × 𝑝. Setiap elemen 𝑐𝑖𝑗 ∈ 𝐂 dihitung sebagai

𝑐𝑖𝑗 = ∑
𝑛

𝑘=1
𝑎𝑖𝑘𝑏𝑘𝑗 (3.24)

Dengan kata lain, elemen di posisi (𝑖, 𝑗) dari hasil adalah darab bintik (dot product) dari baris ke-𝑖
matriks 𝐀 dengan kolom ke-𝑗 matriks 𝐁.

50 OPER ASI TENSOR

Misal, kita punya nilai skalar loss 𝑦 yang bergantung pada 𝐂 = 𝐀𝐁 (diilustrasikan sebagai graf

komputasi oleh Gambar 7) dan kita ingin menghitung 𝜕𝑦
𝜕𝑎𝑖𝑘

 dan 𝜕𝑦
𝜕𝑏𝑘𝑗

. Pertama, perhatikan bahwa

setiap elemen 𝑎𝑖𝑘 berkontribusi ke semua elemen di baris ke-𝑖 dari 𝐂:

(

𝑐𝑖1
𝑐𝑖2
⋮

𝑐𝑖𝑝)

=

(

𝑎𝑖1𝑏11 + ⋯ + 𝑎𝑖𝑘𝑏𝑘1 + ⋯ + 𝑎𝑖𝑛𝑏𝑛1
𝑎𝑖1𝑏12 + ⋯ + 𝑎𝑖𝑘𝑏𝑘2 + ⋯ + 𝑎𝑖𝑛𝑏𝑛2

⋮
𝑎𝑖1𝑏1𝑝 + ⋯ + 𝑎𝑖𝑘𝑏𝑘𝑝 + ⋯ + 𝑎𝑖𝑛𝑏𝑛𝑝)

(3.25)

𝐀

𝐁

·
𝐂

𝑦

Gambar 7: Representasi graf perkalian matriks 𝐂 = 𝐀𝐁 yang diikuti dengan suatu fungsi sebarang dengan luaran skalar

𝑦 (yang diperoleh dari, misalnya, dari operasi penjumlahan total atau rataan)

Dengan menggunakan aturan rantai, gradien 𝑦 terhadap elemen-elemen baris ke-𝑖 dari 𝐀 diperoleh

dengan

(

𝜕𝑦
𝜕𝑎𝑖1
𝜕𝑦

𝜕𝑎𝑖2

⋮
𝜕𝑦

𝜕𝑎𝑖𝑛)

=

(

∑𝑗

𝜕𝑦
𝜕𝑐𝑖𝑗

𝜕𝑐𝑖𝑗
𝜕𝑎𝑖1

∑𝑗
𝜕𝑦

𝜕𝑐𝑖𝑗

𝜕𝑐𝑖𝑗
𝜕𝑎𝑖2

⋮
∑𝑗

𝜕𝑦
𝜕𝑐𝑖𝑗

𝜕𝑐𝑖𝑗
𝜕𝑎𝑖𝑛)

=

(

∑𝑗

𝜕𝑦
𝜕𝑐𝑖𝑗

𝑏1𝑗
∑𝑗

𝜕𝑦
𝜕𝑐𝑖𝑗

𝑏2𝑗
⋮

∑𝑗
𝜕𝑦

𝜕𝑐𝑖𝑗
𝑏𝑛𝑗

)

(Ingat bahwa
𝜕𝑐𝑖𝑗
𝜕𝑎𝑖𝑘

= 𝑏𝑘𝑗 karena 𝑐𝑖𝑗 =
∑𝑘 𝑎𝑖𝑘𝑏𝑘𝑗)

=

(

𝜕𝑦
𝜕𝑐𝑖1
𝜕𝑦

𝜕𝑐𝑖2

⋯
𝜕𝑦

𝜕𝑐𝑖𝑝)

(

𝑏11

𝑏21
⋮

𝑏𝑛1

𝑏12
𝑏22
⋮

𝑏𝑛2

⋯
⋯
⋱
⋯

𝑏1𝑝
𝑏2𝑝
⋮

𝑏𝑛𝑝)

𝖳

,

(Hasil dari langkah sebelumnya adalah darab

bintik dan dapat ditulis sebagai perkalian ma­

triks)

(

𝜕𝑦
𝜕𝑎𝑖1
𝜕𝑦

𝜕𝑎𝑖2

⋮
𝜕𝑦

𝜕𝑎𝑖𝑛)

=

(

𝜕𝑦
𝜕𝑐𝑖1
𝜕𝑦

𝜕𝑐𝑖2

⋮
𝜕𝑦

𝜕𝑐𝑖𝑝)

𝐁𝖳.

(3.26)

OPER ASI TENSOR 51

Ekspresi di atas juga bisa diterjemahkan sebagai kontribusi elemen-elemen baris ke-𝑖 dari 𝐀. Untuk

kemudahan, dengan sedikit “notation abuse”, kita tuliskan 𝜕𝑦
𝜕𝐀 sebagai matriks yang elemen (𝑖, 𝑗)-nya

adalah 𝜕𝑦
𝜕𝑎𝑖𝑗

. Maka, gradien keseluruhan dari semua baris pada 𝐀 jika disusun dalam bentuk matriks

menjadi

(

𝜕𝑙
𝜕𝑎11
𝜕𝑙

𝜕𝑎21

⋮
𝜕𝑙

𝜕𝑎𝑚1

𝜕𝑙
𝜕𝑎12
𝜕𝑙

𝜕𝑎22

⋮
𝜕𝑙

𝜕𝑎𝑚2

…
…
⋱
⋯

𝜕𝑙
𝜕𝑎1𝑛
𝜕𝑙

𝜕𝑎2𝑛

⋮
𝜕𝑙

𝜕𝑎𝑚𝑛)

=

(

𝜕𝑦
𝜕𝑐11
𝜕𝑦

𝜕𝑐21

⋮
𝜕𝑦

𝜕𝑐𝑚1

𝜕𝑦
𝜕𝑐12
𝜕𝑦

𝜕𝑐22

⋮
𝜕𝑦

𝜕𝑐𝑚2

…

…
⋱
⋯

𝜕𝑦
𝜕𝑐1𝑝
𝜕𝑦

𝜕𝑐2𝑝

⋮
𝜕𝑦

𝜕𝑐𝑚𝑝)

𝐁𝖳

𝜕𝑦
𝜕𝐀

= 𝜕𝑦
𝜕𝐂

𝐁𝖳

(3.27)

Dengan logika serupa untuk matriks 𝐁:

𝜕𝑦
𝜕𝐁

= 𝐀𝖳 𝜕𝑦
𝜕𝐂

(3.28)

Pada kode operasi matmul , Atribut a.grad dan b.grad berkorespondensi dengan 𝜕𝑦
𝜕𝐀 dan 𝜕𝑦

𝜕𝐁 , sedan­

gkan upstream_grad berkorespondensi dengan 𝜕𝑦
𝜕𝐂 . Sekarang makna dari baris kode pada fungsi laluan

balik matmul mulai jelas:

def matmul(a: Tensor, b: Tensor) -> Tensor:
 ...

 def backward_fn(upstream_grad: NDArray):
 a_grad = upstream_grad @ b.data.T if a.requires_grad else None
 b_grad = a.data.T @ upstream_grad if b.requires_grad else None
 return [a_grad, b_grad]
 ...

3.8.1. Kasus Khusus: Batch Matrix Multiplication

Operator @ pada NumPy sudah mendukung batch matrix multiplication. Dua dimensi terakhir

diperlakukan sebagai matriks, dimensi sisanya sebagai batch.

Operand Kiri Operand Kanan Hasil

(𝑚, 𝑛) (𝑛, 𝑝) (𝑚, 𝑝)

(𝑏,𝑚, 𝑛) (𝑏, 𝑛, 𝑝) (𝑏,𝑚, 𝑝)

(𝑏,𝑚, 𝑛) (𝑛, 𝑝) (𝑏,𝑚, 𝑝)

Tabel 4: Perilaku operator @ untuk berbagai dimensi tensor

Untuk tensor 𝐀 ∈ ℝ𝑏×𝑚×𝑛 dan 𝐁 ∈ ℝ𝑏×𝑛×𝑝, operasi @ menghasilkan 𝐂 ∈ ℝ𝑏×𝑚×𝑝 dengan

𝐂𝑖 = 𝐀𝑖𝐁𝑖 untuk setiap 𝑖 ∈ {1,…, 𝑏}. Laluan maju implementasi kita otomatis mendukung ini.

Namun, ada masalah pada laluan mundur: metode .T membalik seluruh dimensi, bukan hanya

dimensi matriks. Perbaiki dengan swapaxes(-2, -1) :

52 OPER ASI TENSOR

>>> x = np.zeros((2, 3, 4))
>>> x.T.shape # keliru untuk dimensi lebih dari 2
(4, 3, 2)
>>> x.swapaxes(-2, -1).shape # lebih tepat, hanya membalik dua dimensi terakhir
(2, 4, 3)

Fungsi backward_fn kita perbarui sebagai berikut:

def matmul(a: Tensor, b: Tensor) -> Tensor:
 def backward_fn(upstream_grad: NDArray):
 b_T = np.swapaxes(b.data, -2, -1)
 a_T = np.swapaxes(a.data, -2, -1)

 a_grad = upstream_grad @ b_T if a.requires_grad else None
 b_grad = a_T @ upstream_grad if b.requires_grad else None
 return [a_grad, b_grad]

 result = Tensor(a.data @ b.data, requires_grad=a.requires_grad or b.requires_grad)
 result.backward_fn = backward_fn
 result.inputs = [a, b]
 return result

Sekarang implementasi kita mendukung tensor dengan dimensi sembarang.

3.9. Indexing dan Slicing

Kita juga perlu mendukung operasi indexing dan slicing pada tensor. Operasi ini penting dalam

deep deep learning, mulai dari mengambil batch data dengan indeks tertentu, memilih fitur spesifik,

hingga implementasi operasi yang lebih kompleks seperti embedding lookup dan pemilihan sampel

pada langkah waktu tertentu untuk arsitektur rekuren.

Yang menarik dari indexing adalah bagaimana kita menghitung gradiennya. Berbeda dengan

operasi matematika seperti perkalian atau penjumlahan yang memiliki notasi turunan formal (𝜕𝑦
𝜕𝑥),

operasi indexing tidak memiliki notasi matematis standar untuk turunannya. Ini karena indexing

bukan fungsi matematis dalam pengertian “tradisional”. Ia hanyalah operasi “pemilihan” atau

“penyalinan” elemen.

Meski begitu, aturan gradiennya sederhana: ketika kita mengambil sebagian elemen dari tensor,

gradien yang mengalir balik harus diletakkan tepat pada posisi yang sama dengan elemen yang diambil,

sementara posisi lainnya mendapat gradien nol. Ini sesuai dengan intuisi bahwa hanya elemen yang

dipilih yang berkontribusi pada tensor luaran, sehingga hanya mereka yang menerima gradien.

def index_select(x: Tensor, indices) -> Tensor:
 def backward_fn(upstream_grad: NDArray) -> list[NDArray | None]:
 if not x.requires_grad:
 return [None]

 # Persiapkan penampung gradien dengan ukuran yang sama
 # dengan masukan
 x_grad = np.zeros_like(x.data)

OPER ASI TENSOR 53

 # Letakkan upstream_grad tepat pada lokasi terindeks
 x_grad[indices] = upstream_grad

 return [x_grad]

 indexed_data = x.data[indices]
 result = Tensor(indexed_data, requires_grad=x.requires_grad)
 result.backward_fn = backward_fn
 result.inputs = [x]

 return result

Agar bisa menggunakannya dengan nyaman seperti indexing normal (x[i] , x[:, 1:100] , dst.),

tambahkan metode dunder pada kelas Tensor .

class Tensor:

 ...

 def __getitem__(self, indices):
 return index_select(self, indices)

 ...

3.10. Penggabungan dan Pemecahan Tensor

3.10.1. Stack

def stack(tensors: list[Tensor], dim: int = 0) -> Tensor:
 """Tumpuk daftar tensor sepanjang dimensi tertentu"""
 # Tangani dimensi negatif
 data_list = [t.data for t in tensors]
 ndim = data_list[0].ndim
 if dim < 0:
 dim = ndim + 1 + dim

 requires_grad = any(t.requires_grad for t in tensors)

 def backward_fn(upstream_grad: NDArray) -> list[NDArray | None]:
 grads = []
 for i, t in enumerate(tensors):
 if t.requires_grad:
 # Extract the gradient for this tensor
 indices: list[slice | int] = [slice(None)] * upstream_grad.ndim
 indices[dim] = i
 grads.append(upstream_grad[tuple(indices)])
 else:
 grads.append(None)
 return grads

54 OPER ASI TENSOR

 stacked_data = np.stack(data_list, axis=dim)
 result = Tensor(stacked_data, requires_grad=requires_grad)
 result.backward_fn = backward_fn
 result.inputs = tensors

 return result

3.10.2. Split

def split(x: Tensor, num_splits: int, dim: int = -1) -> list[Tensor]:
 """
 Potong tensor menjadi bagian-bagian berukuran sama sepanjang dimensi tertentu

 Tidak ada backward_fn karena operasi ini turunan dari index_select yang sudah
 mengimplementasikan backward_fn
 """
 # Tangani dimensi negatif
 if dim < 0:
 dim = x.data.ndim + dim

 # Hitung ukuran tiap potongan
 dim_size = x.shape[dim]
 if dim_size % num_splits != 0:
 raise ValueError(f"Dimension size {dim_size} not divisible by {num_splits}")

 split_size = dim_size // num_splits

 splits = []
 for i in range(num_splits):
 indices = [slice(None)] * x.data.ndim
 indices[dim] = slice(i * split_size, (i + 1) * split_size)
 splits.append(x[tuple(indices)])

 return splits

3.11. Manipulasi Bentuk

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut

labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore

dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum impendere.

3.11.1. Transposisi

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut

labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore

dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum impendere.

TODO

OPER ASI TENSOR 55

3.11.2. Reshape

def reshape(x: Tensor, *shape: int) -> Tensor:
 x = _ensure_tensor(x)
 reshaped_data = x.data.reshape(shape)

 def backward_fn(upstream_grad: NDArray):
 # Kembalikan upstream_grad ke bentuk awal x
 x_grad = upstream_grad.reshape(x.data.shape) if x.requires_grad else None
 return [x_grad]

 result = Tensor(reshaped_data, requires_grad=x.requires_grad)
 result.backward_fn = backward_fn
 result.inputs = [x]
 return result

Modifikasi kelas Tensor

class Tensor:
 ...

 def reshape(self, *shape: int):
 return reshape(self, *shape)

3.12. Pemanasan: Regresi Linier

Sebelum membangun neural network yang kompleks, mari kita uji implementasi dengan model

paling sederhana: regresi linier. Regresi linier memodelkan hubungan antara masukan 𝐱 ∈ ℝ𝑑 (tiap

sampel) dan luaran 𝑦 ∈ ℝ sebagai:

𝑦 = 𝐱𝖳𝐰 + 𝑏 (3.29)

di mana 𝐰 ∈ ℝ𝑑 adalah vektor bobot (weight) dan 𝑏 ∈ ℝ adalah bias. Untuk dataset dengan 𝑛

sampel, kita peroleh 𝐗 ∈ ℝ𝑛×𝑑 dan semua prediksi direpresentasikan dengan notasi matriks sebagai

berikut:

𝐲̂ = 𝐗𝐰 + 𝑏 (3.30)

Kita gunakan Mean Squared Error (MSE) sebagai fungsi loss:

𝐿MSE = 1
𝑛

∑
𝑛

𝑖=1
(𝑦𝑖 − 𝑦𝑖)

2 (3.31)

Mari implementasikan MSE dengan operasi tensor kita:

def mean_squared_error(y: Tensor, y_pred: Tensor) -> Tensor:
 err = y - y_pred
 return (err * err).mean()

56 OPER ASI TENSOR

3.12.1. Dataset

Untuk latihan ini, kita menggunakan dataset California Housing yang disediakan oleh pustaka

scikit-learn . Fungsi fetch_california_housing akan mengembalikan larin NumPy. Kita standarisasi

matriks fitur dan pastikan y berukuran (𝑛, 1). Setelah itu konversi x dan y dalam Tensor .

...
from sklearn.datasets import fetch_california_housing

x, y = fetch_california_housing(return_X_y=True)

x = (x - x.mean(axis=0)) / x.std(axis=0) # standarisasi
y = y.reshape(-1, 1)

Konversikan ke Tensor
x = Tensor(x)
y = Tensor(y)

Variable pembantu, jumlah feature
n_feat = x.shape[1]

3.12.2. Gradient Descent

Untuk mengoptimasi parameter, kita gunakan aturan pembaruan gradient descent:

𝑤 ≔ 𝑤 − 𝛼 𝜕
𝜕𝑤

𝐿MSE

𝑏 ≔ 𝑏 − 𝛼 𝜕
𝜕𝑏

𝐿MSE

(3.32)

di mana 𝛼 adalah learning rate. Perhatikan bagaimana dengan mudahnya kita bisa memperoleh

gradien seluruh parameter dengan memanggil loss.backward() .

Parameter dan bias.
Perhatikan bahwa w dan b melacak gradien karena kita akan memperbarui mereka.
w = Tensor(np.random.randn(n_feat, 1), requires_grad=True)
b = Tensor(0.0, requires_grad=True)

learning_rate = 0.1
max_iter = 1000
for i in range(max_iter):
 y_pred = x @ w + b
 loss = mean_squared_error(y, y_pred)
 loss.backward()

 # Pembaruan parameter sesuai gradient descent
 w.data = w.data - learning_rate * w.grad # type:ignore
 b.data = b.data - learning_rate * b.grad # type:ignore

 # Nol-kan kembali gradien
 w.zero_grad()

OPER ASI TENSOR 57

 b.zero_grad()

 if i % 10 == 0:
 print(f"loss at {i}: {float(loss.data):.2f}")

Prediksi akhir
y_pred = x @ w + b

3.12.3. Kode Selengkapnya

import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import fetch_california_housing
from tqdm import tqdm

Penulis menamai pustaka ini dengan "Lantern". Tidak sebesar "Torch",
namun cukup sebagai penerang ;)
from lantern import Tensor

def mean_squared_error(y: Tensor, y_pred: Tensor) -> Tensor:
 err = y - y_pred
 return (err * err).mean()

Kita tidak memecah dataset menjadi bagian train-test sekarang
karena kita hanya ingin melihat seberapa baik model kita melakukan fitting
x, y = fetch_california_housing(return_X_y=True)

x = (x - x.mean(axis=0)) / x.std(axis=0) # standarisasi
y = y.reshape(-1, 1)

x = Tensor(x)
y = Tensor(y)

n_feat = x.shape[1]

Parameter dan bias.
Perhatikan bahwa w dan b melacak gradien karena kita akan memperbarui mereka.
w = Tensor(np.random.randn(n_feat, 1), requires_grad=True)
b = Tensor(0.0, requires_grad=True)

learning_rate = 0.1
max_iter = 1000

for i in range(max_iter):
 y_pred = x @ w + b
 loss = mean_squared_error(y, y_pred)
 loss.backward()

58 OPER ASI TENSOR

 # Parameter update
 w.data = w.data - learning_rate * w.grad
 b.data = b.data - learning_rate * b.grad

 # Reset parameter gradients
 w.zero_grad()
 b.zero_grad()

 if i % 10 == 0:
 print(f"loss: {float(loss.data):.2f}")

Prediksi akhir
y_pred = x @ w + b

Plot prediction vs actual
plt.figure(figsize=(10, 6))
plt.plot(y.data, "b-", label="Actual", alpha=0.7)
plt.plot(y_pred.data, "r-", label="Predicted", alpha=0.7)
plt.xlabel("Sample idx")
plt.ylabel("Value")
plt.legend()
plt.show()

Luaran

loss at 0: 11.42
loss at 10: 0.75
loss at 20: 0.65
loss at 30: 0.62
...
loss at 970: 0.52
loss at 980: 0.52
loss at 990: 0.52

Jika implementasi kita benar, error seharusnya mendekati nol (dalam batas presisi numerik).

Dari visualisasi pada Gambar 8, kita dapat melihat bahwa model berhasil menangkap tren umum

harga rumah. Prediksi dapat mengikuti pola nilai aktual dengan cukup baik. Dengan fondasi ini, kita

siap membangun model yang lebih kompleks seperti multilayer perceptron.

OPER ASI TENSOR 59

Gambar 8: Perbandingan nilai aktual (biru) dan prediksi (merah) pada dataset California Housing. Model regresi linier

berhasil menangkap tren umum meskipun tidak sempurna untuk data yang kompleks.

60 OPER ASI TENSOR

Bab 4. Antarmuka Pemrograman

Aplikasi (API) Deep learning

Pada bab sebelumnya, kita telah membangun sistem automatic differentiation yang fungsional.

Namun, menulis model yang kompleks dengan API level rendah akan menjadi sangat merepotkan.

Melacak puluhan parameter secara manual bukan hal mudah. Belum lagi mengatur mode training/

evaluation, atau membangun arsitektur berlapis. Di sinilah kita memerlukan abstraksi yang lebih

tinggi.

PyTorch memperkenalkan konsep modul (Module) sebagai unsur pokok untuk membangun

neural network. Desain ini elegan karena memungkinkan kita untuk membuat komposisi hierarkis

yang alami untuk deep learning, di mana suatu modul dapat berisi beberapa modul lain. Tentu kita

juga akan membuat versi kita sendiri.

4.1. Kelas Module

Kelas Module adalah jantung dari API tingkat tinggi kita. Setiap komponen neural network dari

lapisan sederhana hingga model kompleks akan mewarisi kelas ini.

4.1.1. Anatomi Modul

Kita mulai sketsa kelas Module dengan beberapa atribut.

class Module:
 def __init__(self):
 self._parameters: dict[str, Tensor] = {}
 self._modules: dict[str, Module] = {}
 self.training = True

Dictionary _parameters menyimpan semua tensor yang perlu dioptimasi (misal, bobot dan bias dari

lapisan linier). Dictionary _modules dapat menyimpan sub-modul yang memungkinkan kita untuk

membangun arsitektur berlapis. Penanda training menentukan perilaku module saat laluan maju.

Penanda ini penting untuk beberapa lapisan seperti dropout dan batch normalization yang berperilaku

berbeda saat mode lati dan mode inferensi.

4.1.2. Forward Pass Abstrak

class Module:
 ...
 def forward(self, *args, **kwargs) -> Tensor:
 raise NotImplementedError()

Method forward sengaja dibuat abstrak. Setiap module konkret harus mendefinisikan logika forward

pass-nya sendiri. Ini memaksa desain yang eksplisit—tidak ada perilaku default yang mungkin menye­

satkan. Signature yang fleksibel dengan *args dan **kwargs mengakomodasi berbagai jenis module,

dari lapisan sederhana yang menerima satu tensor hingga model kompleks dengan multiple inputs.

61

4.1.3. Mode Training dan Evaluasi

Metode train mengatur penanda training secara rekursif.

def train(self, mode: bool = True):
 self.training = mode
 for module in self._modules.values():
 module.train(mode)

Ketika kita memanggil model.train() pada model tingkat teratas, semua sub-modul juga akan masuk

mode latih. Perhatikan bahwa kita tidak perlu melakukan apapun terhadap parameters di sini. Para­

meters tidak memiliki “mode” karena mereka hanya data. Yang berubah adalah bagaimana perilaku

modul menggunakan parameter-parameter tersebut.

4.1.4. Iterasi Parameter

def parameters(self):
 for param in self._parameters.values():
 yield param
 for module in self._modules.values():
 yield from module.parameters()

Metode dengan kembalian generator ini mengumpulkan semua parameter secara rekursif. Pertama,

yield semua parameter lokal, kemudian secara rekursif yield juga parameter dari sub-modul. Penggu­

naan generator membuat metode ini efisien dari sisi konsumsi memori karena kita tidak perlu

membuat larik besar berisi semua parameter sekaligus.

Penggunakan generator alih-alih list tentu memiliki konsekuensi (trade-off). Generator lebih

efisien untuk model besar, tapi kita tidak bisa mengindeks hasilnya atau mengetahui jumlah parameter

tanpa iterasi penuh.

Catatan

PyTorch juga memiliki metode parameters() yang mengembalikan generator karena keun­

tungan efisiensi memori lebih penting untuk model modern yang bisa memiliki miliaran

parameter. Metode parameters() ini biasanya akan diakses oleh pengoptimal (optimizer).

Pembaca yang akrab dengan pustaka PyTorch mungkin mengenali pola ini:

...
optimizer = Adam(model.parameters(), lr=0.001)
...

4.1.5. Metode Magic untuk Ergonomi

Kita akan menggunakan pola yang mirip dengan PyTorch dari segi ergonomi dengan mengimple­

mentasikan beberapa metode magic seperti __call__ dan __setattr__ .

def __call__(self, *args, **kwargs) -> Tensor:
 return self.forward(*args, **kwargs)

62 ANTARMUKA PEMROGR AMAN APLIKASI (API) DEEP LEARNING

Dengan mendefinisikan __call__ , kita bisa menggunakan module seperti fungsi:

output = model(input) alih-alih output = model.forward(input) . Ini membuat kode lebih natural dan

konsisten dengan konvensi Python di mana callable objects umum digunakan.

Penimpaan metode magic __setattr__ berguna untuk registrasi modul atau parameter secara

otomatis.

def __setattr__(self, name, value):
 if isinstance(value, Tensor):
 self._parameters[name] = value
 elif isinstance(value, Module):
 self._modules[name] = value
 super().__setattr__(name, value)

Setiap kali kita melakukan penetapan tensor atau module sebagai atribut objek, mereka otomatis

terdaftar di dictionary internal yang sesuai. Kita akan dimungkinkan untuk menulis sintaks secara

natural seperti ini dengan efek samping tambahan:

self.weight = Tensor(np.random.randn(10, 5)) # Otomatis terdaftar sebagai parameter
self.linear = Linear(5, 3) # Otomatis terdaftar sebagai sub-module

Tanpa ini, kita harus secara manual melakukan penetapan setiap parameter dan modul, dan ini

menambah peluang terjadinya galat.

4.1.6. Implementasi Lengkap

class Module:
 def __init__(self):
 self._parameters: dict[str, Tensor] = {}
 self._modules: dict[str, Module] = {}
 self.training = True

 def forward(self, *args, **kwargs) -> Tensor:
 raise NotImplementedError()

 def train(self, mode: bool = True):
 self.training = mode
 for module in self._modules.values():
 module.train(mode)

 def parameters(self):
 for param in self._parameters.values():
 yield param
 for module in self._modules.values():
 yield from module.parameters()

 def __call__(self, *args, **kwargs) -> Tensor:
 return self.forward(*args, **kwargs)

 def __setattr__(self, name, value):

ANTARMUKA PEMROGR AMAN APLIKASI (API) DEEP LEARNING 63

 if isinstance(value, Tensor):
 self._parameters[name] = value
 elif isinstance(value, Module):
 self._modules[name] = value
 super().__setattr__(name, value)

4.2. Beberapa Jenis Lapisan (Layer) Dasar

4.2.1. Lapisan Linier

Lapisan linier bertugas melakukan operasi 𝑦 = 𝐖𝐱 + 𝐛. Pada lapisan ini, terjadi proses penjum­

lahan terbobot (weighted sum) pada semua fitur masukan dengan matriks 𝐖. Vektor bias 𝐛

memberikan nilai offset untuk menunjang ekspresivitas model. Berikut implementasinya:

class Linear(Module):
 def __init__(self, in_features: int, out_features: int, bias: bool = True):
 super().__init__()

 self.in_features = in_features
 self.out_features = out_features
 self.bias = bias

 self.w = Tensor(
 np.random.randn(self.in_features, self.out_features), requires_grad=True
)
 self.b = (
 Tensor(np.zeros((self.out_features,)), requires_grad=True)
 if self.bias
 else None
)

 def forward(self, x: Tensor) -> Tensor:
 out = x @ self.w
 # Tambah bias jika diperlukan
 if self.b:
 out = out + self.b
 return out

Penulis mengikuti API PyTorch yang mengizinkan bias bersifat opsional. Perilaku bawaan inisialisasi

bias adalah menetapkan seluruh elemennya dengan nilai 0.

Pendalaman

Teknik lanjutan seperti Xavier [4] dan He [1] digunakan pustaka deep learning modern

untuk menginisialisasi matriks bobot self.w alih-alih menggunakan sebarang nilai acak.

Misalkan suatu model deep learning memiliki 𝐿 lapisan dengan 𝑙 = 1,…,𝐿, matriks bobot

untuk tiap lapisan 𝑙 yang dinotasikan dengan 𝐖(𝑙), dan jumlah neuron pada lapisan ke-

𝑙 yang dinotasikan dengan 𝑛𝑙. Inisialisasi Xavier menentukan tiap entri 𝑤 ∈ 𝐖(𝑙) untuk

mengikuti distribusi seragam

64 ANTARMUKA PEMROGR AMAN APLIKASI (API) DEEP LEARNING

𝑤 ∼ 𝒰︀
(
−√ 6

𝑛𝑙−1 + 𝑛𝑙
,√ 6

𝑛𝑙−1 + 𝑛𝑙
,
)
. (4.1)

Varian normalnya mengikuti distribusi

𝑤 ∼ 𝒩︀
(
0,√ 2

𝑛𝑙−1 + 𝑛𝑙)
 (4.2)

Dalam terminologi Xavier, variabel 𝑛𝑙−1 disebut fan-in dan 𝑛𝑙 disebut fan-out. Sayangnya,

performa teknik Xavier disinyalir tidak begitu bagus dengan fungsi aktivasi ReLU seperti

dilaporkan oleh Kumar et al. [5]. He et al. dalam [1] kemudian menawarkan inisialisasi

berdasarkan distribusi seragam

𝑤 ∼ 𝒰︀
(
−√ 6

𝑛𝑙−1
,√ 6

𝑛𝑙)
 (4.3)

dan varian normalnya berdasarkan

𝑤 ∼ 𝒩︀
(
0,√ 2

𝑛𝑙−1)
. (4.4)

Berikut ini implementasi keempatnya:

import numpy as np

def xavier_uniform(n_in, n_out, gain=1.0):
 """Xavier/Glorot uniform initialization"""
 bound = gain * np.sqrt(6.0 / (n_in + n_out))
 return np.random.uniform(-bound, bound, (n_in, n_out))

def xavier_normal(n_in, n_out, gain=1.0):
 """Xavier/Glorot normal initialization"""
 std = gain * np.sqrt(2.0 / (n_in + n_out))
 return np.random.normal(0, std, (n_in, n_out))

def he_uniform(n_in, n_out, gain=1.0):
 """He uniform initialization"""
 bound = gain * np.sqrt(6.0 / n_in)
 return np.random.uniform(-bound, bound, (n_in, n_out))

def he_normal(n_in, n_out, gain=1.0):
 """He normal initialization"""
 std = gain * np.sqrt(2.0 / n_in)
 return np.random.normal(0, std, (n_in, n_out))

ANTARMUKA PEMROGR AMAN APLIKASI (API) DEEP LEARNING 65

Kita bisa menggunakan salah satu fungsi di atas untuk menggantikan

np.random.rand(self.in_features, self.out_features) sesuai kebutuhan.

4.2.2. Fungsi Aktivasi Sebagai Modul

Pola umum yang bisa ditemui … fungsi aplikasi digunakan sebagai modul.

Hal ini juga dapat ditemui pada pustaka PyTorch.

class ReLU(Module):
 def forward(self, x: Tensor) -> Tensor:
 return relu(x)

class Sigmoid(Module):
 def forward(self, x: Tensor) -> Tensor:
 return sigmoid(x)

class Tanh(Module):
 def forward(self, x: Tensor) -> Tensor:
 return tanh(x)

4.2.3. Lapisan Drop-Out

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut

labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore

dolemus, fieri.

4.2.4. Lapisan Embedding

Lapisan embedding mengubah indeks diskrit (bilangan bulat) menjadi vektor kontinu berdimensi

tetap. Bayangkan kita punya kamus dengan 10.000 kata, dan setiap kata diwakili oleh indeks unik (0

sampai 9.999). Lapisan embedding memetakan setiap indeks ini ke vektor berukuran tetap, misalnya

128 dimensi.

Secara matematis, lapisan embedding dapat dipandang sebagai matriks 𝐄 ∈ ℝ𝑣×𝑑, dengan 𝑉

adalah ukuran kosa-kata dan 𝑑 adalah dimensi embedding. Ketika kita memberikan indeks 𝑖, lapisan

ini mengembalikan baris ke-𝑖 dari matriks 𝐄. Operasi ini sebenarnya sama dengan melakukan

perkalian matriks antara vektor one-hot dengan matriks embedding. Namun, implementasi langsung

dengan indexing jauh lebih efisien karena kita tidak perlu membuat vektor one-hot yang sangat jarang

(sparse).

class Embedding(Module):
 def __init__(self, num_embeddings: int, embedding_dim: int):
 super().__init__()
 self.num_embeddings = num_embeddings
 self.embedding_dim = embedding_dim

66 ANTARMUKA PEMROGR AMAN APLIKASI (API) DEEP LEARNING

 # Inisialisasi matriks embedding dengan distribusi normal
 self.weight = Tensor(
 np.random.normal(0, 0.02, (num_embeddings, embedding_dim)),
 requires_grad=True
)

 def forward(self, input_ids: Tensor) -> Tensor:
 # Gunakan indexing yang sudah kita implementasikan
 return self.weight[input_ids.data.astype(int)]

Gradien untuk lapisan embedding dihitung melalui operasi indexing yang telah kita implementasikan

sebelumnya. Ketika backpropagation terjadi, hanya baris-baris yang digunakan (yang terindeks) yang

akan menerima gradien, sementara baris lainnya tetap tidak berubah.

Lapisan embedding menjadi fondasi model-model bahasa modern seperti BERT dan GPT.

Pada model-model tersebut, setiap token (kata atau subkata) dipetakan ke vektor embedding yang

kemudian diproses oleh lapisan-lapisan transformer (yang akan kita implementasikan juga di bagian

selanjutnya).

Contoh: Contoh penggunaan lapisan embedding

Mari kita lihat bagaimana lapisan embedding bekerja dalam praktiknya:

Kosa-kata sederhana: indeks untuk kata-kata
vocab = {"<pad>": 0, "halo": 1, "dunia": 2, "deep": 3, "learning": 4}
vocab_size = len(vocab)
embedding_dim = 4

Buat lapisan embedding
embed_layer = Embedding(vocab_size, embedding_dim)

Kalimat sebagai deretan indeks
"halo halo learning" -> [1, 1, 4]
sentence_indices = Tensor(np.array([1, 1, 4]))

Laluan maju
embeddings = embed_layer(sentence_indices)
embeddings.backward()

print("Embedding weight")
print(embed_layer.weight)
print("Embedding weight.grad")
print(embed_layer.weight.grad)
print("Embedding result")
print(embeddings)
print(f"Shape: {embeddings.shape}") # (3, 8) - 3 kata, masing-masing 4
dimensi

ANTARMUKA PEMROGR AMAN APLIKASI (API) DEEP LEARNING 67

Luaran

Embedding weight
array([[-0.01665979, 0.01320985, 0.00940399, 0.02108722],
 [-0.01865394, 0.0582143 , -0.01788336, 0.00022806],
 [-0.01375527, -0.00489541, -0.00520801, -0.00751396],
 [0.02269423, -0.00837957, 0.02449486, -0.01828196],
 [-0.00226322, 0.01171692, -0.01726989, -0.00774343]])
Embedding weight.grad
[[0. 0. 0. 0.]
 [2. 2. 2. 2.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [1. 1. 1. 1.]]
Embedding result
array([[-0.01865394, 0.0582143 , -0.01788336, 0.00022806],
 [-0.01865394, 0.0582143 , -0.01788336, 0.00022806],
 [-0.00226322, 0.01171692, -0.01726989, -0.00774343]])
Shape: (3, 4)

Perhatikan bahwa baris pertama dan kedua hasil embedding sama karena kita mengulang

indeks kata “halo” (1) dua kali. Karena itu pula baris kedua pada weight.grad bernilai dua,

karena data pada baris ini berkontribusi sebanyak dua kali bagi luaran.

4.3. Lapisan Sekuensial

Lapisan sekuensial menerima modul-modul pada konstruktor dengan mempertahankan urutannya.

Saat forward() dipanggil, lapisan ini akan menerima masukan yang kompatibel dengan modul

pertama pada sekuens. Modul pertama akan memanggil forward() , kemudian luarannya menjadi

masukan modul selanjutnya, kemudian luarannya jadi masukan modul selanjutnya, dan seterusnya,

secara berurutan.

class Sequential(Module):
 def __init__(self, *modules):
 super().__init__()
 for i, module in enumerate(modules):
 # Use string indices so they're stored in _modules
 setattr(self, str(i), module)

 def forward(self, x: Tensor) -> Tensor:
 for module in self._modules.values():
 x = module(x)
 return x

68 ANTARMUKA PEMROGR AMAN APLIKASI (API) DEEP LEARNING

4.4. Fungsi Loss (Loss Function)

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore

et dolore magnam aliquam quaerat.

4.4.1. MSE

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore

et dolore magnam aliquam quaerat.

4.4.2. Cross-Entropy

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore

et dolore magnam aliquam quaerat.

class CrossEntropyLoss(Module):
 def __init__(self, dim: int = -1):
 super().__init__()
 self.dim = dim

 def forward(self, logits: Tensor, targets: Tensor) -> Tensor:
 """Cross-entropy loss for one-hot targets and logits"""
 # Apply log-softmax for numerical stability
 log_probs = log_softmax(logits, dim=self.dim)

 # Coss-entropy: -sum(targets * log_probs)
 loss_per_sample = -(targets * log_probs).sum(dim=self.dim)

 # Mean loss
 return tensor_mean(loss_per_sample)

4.5. Pengoptimal (Optimizer)

Pengoptimal adalah komponen dalam ekosistem deep learning yang bertanggung jawab mengatur

pembaruan parameter model berdasarkan gradien yang dihitung selama propagasi balik. Kelas

ini memberi abstraksi terhadap pembaruan parameter secara manual. Pengoptimal mengimplemen­

tasikan berbagai varian dari ide dasar gradient descent. Namun, gradient descent murni memiliki

beberapa kelemahan fundamental yang membuatnya kurang praktis untuk model modern. Mari kita

bahas evolusi dari pengoptimal sederhana hingga yang lebih mutakhir.

4.5.1. Kelas Basis

Semua pengoptimal dalam pustaka kita akan mewarisi kelas basis yang mendefinisikan antarmuka

umum.

from typing import Iterable
import numpy as np

from .tensor import Tensor

ANTARMUKA PEMROGR AMAN APLIKASI (API) DEEP LEARNING 69

class Optimizer:
 def __init__(self, parameters: Iterable[Tensor]):
 self.parameters = list(parameters)

 def step(self):
 """Update parameters based on their gradients"""
 pass

 def zero_grad(self):
 """Zero out all parameter gradients"""
 for param in self.parameters:
 param.zero_grad()

Metode step() adalah bagian utama dari pengoptimal, di mana pembaruan parameter terjadi.

Setiap pengoptimal konkret akan mengimplementasikan logika pembaruannya sendiri di metode

ini. Metode zero_grad() juga penting karena sistem autodiff kita mengakumulasi gradien. Tanpa

me-nol-kan gradien setelah setiap iterasi, gradien dari iterasi sebelumnya akan terus terakumulasi,

menghasilkan pembaruan yang keliru.

4.5.2. Stochastic Gradient descent (SGD)

SGD adalah pengoptimal paling fundamental dalam deep learning. Meskipun sederhana, SGD

masih banyak digunakan karena sifatnya yang dapat diprediksi dan terbukti efektif untuk berbagai

masalah. Aturan pembaruannya mengikuti konsep gradient descent yang pernah kita bahas pada

Persamaan (3.32).

class SGD(Optimizer):
 def __init__(self, parameters: Iterable[Tensor], lr: float = 0.01):
 super().__init__(parameters)
 self.lr = lr

 def step(self):
 for param in self.parameters:
 if param.grad is not None:
 param.data -= self.lr * param.grad

Kesederhanaan SGD adalah kekuatan sekaligus kelemahannya. Tidak ada mekanisme adaptif, tidak

ada momentum, hanya langkah konstan ke arah berlawanan gradien. Ini membuat SGD mudah

dipahami dan diawakutu, tapi juga membuatnya lambat konvergen dan sensitif terhadap pemilihan

learning rate.

Catatan

Implementasi SGD pada pustaka PyTorch sudah mengadopsi momentum dan Nesterov

4.5.3. RMSprop

RMSprop (root mean square propagation) adalah pengoptimal pertama yang memperkenalkan kon­

70 ANTARMUKA PEMROGR AMAN APLIKASI (API) DEEP LEARNING

sep learning rate adaptif. Diperkenalkan pada Lecture 6 Coursera oleh Hinton5, RMSprop mengatasi

masalah learning rate yang terlalu besar atau kecil dengan menyesuaikannya berdasarkan magnitudo

riwayat gradien. Ide utamanya adalah parameter dengan gradien besar secara konsisten seharusnya

mendapat learning rate efektif yang lebih kecil, sementara parameter dengan gradien kecil seharusnya

mendapat learning rate yang lebih besar. Aturan pembaruan RMSprop adalah sebagai berikut:

𝑣𝑡 = 𝛽𝑣𝑡−1 + (1 − 𝛽)𝑔2
𝑡

𝜃𝑡 = 𝜃𝑡−1 − 𝛼
√𝑣𝑡 + 𝜀

𝑔𝑡
(4.5)

Variabel 𝑣𝑡 di langkah waktu 𝑡 berkorespondensi dengan masing-masing skalar parameter model, 𝜃 ∈
Θ.

class RMSprop(Optimizer):
 def __init__(
 self,
 parameters: Iterable[Tensor],
 lr: float = 0.01,
 alpha: float = 0.99,
 eps: float = 1e-8
):
 super().__init__(parameters)
 self.lr = lr
 self.alpha = alpha
 self.eps = eps

 # Running average of squared gradients
 self.v = [np.zeros_like(param.data) for param in self.parameters]

 def step(self):
 for i, param in enumerate(self.parameters):
 if param.grad is None:
 continue

 grad = param.grad

 # Pembaruan rata-rata bergerak dari kuadrat gradien
 self.v[i] = self.alpha * self.v[i] + (1 - self.alpha) * (grad ** 2)

 # Pembaruan parameter dengan learning rate adaptif
 param.data -= self.lr * grad / (np.sqrt(self.v[i]) + self.eps)

4.5.4. Adam

Adam (Adaptive Moment Estimation) [6] menggabungkan ide momentum dan learning rate adaptif

per parameter. Adam cenderung menjadi pilihan default untuk banyak praktisi karena performanya

yang konsisten untuk beragam masalah. Adam menyimpan dua momen statistik untuk setiap para­

meter, yaitu, 1) momen pertama 𝑚 sebagai estimasi rata-rata bergerak dari gradien; dan 2) momen

5https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

ANTARMUKA PEMROGR AMAN APLIKASI (API) DEEP LEARNING 71

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

kedua 𝑣: Estimasi rata-rata bergerak dari kuadrat gradien. Aturan pembaruan Adam adalah sebagai

berikut:

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽𝑏)𝑔2
𝑡

𝑚̂𝑡 = 𝑚𝑡
1 − 𝛽𝑡

1

𝑣𝑡 = 𝑣𝑡
1 − 𝛽𝑡

2

𝜃𝑡 = 𝜃𝑡−1 − 𝛼 ⋅ 𝑚̂𝑡

√𝑣𝑡 + 𝜀

(4.6)

dengan hyperparameter 𝛽1 dan 𝛽2 untuk mengontrol seberapa cepat estimasi momen “melupakan”

nilai-nilai lama, dan hyperparameter 𝜀 untuk mencegah pembagian dengan nol. Variabel 𝑚𝑡 dan 𝑣𝑡 di

langkah waktu 𝑡 berkorespondensi dengan masing-masing skalar parameter model, 𝜃𝑡 ∈ Θ. Berikut

implementasinya dengan Python.

class Adam(Optimizer):
 def __init__(
 self,
 parameters: Iterable[Tensor],
 lr: float = 0.001,
 beta1: float = 0.9,
 beta2: float = 0.999,
 eps: float = 1e-8,
):
 super().__init__(parameters)
 self.lr = lr
 self.beta1 = beta1
 self.beta2 = beta2
 self.eps = eps
 self.t = 0 # time step, akan bertambah tiap `.step()` dieksekusi

 # Inisialisasi penampung momentum
 self.m = [np.zeros_like(param.data) for param in self.parameters]
 self.v = [np.zeros_like(param.data) for param in self.parameters]

 def step(self):
 self.t += 1

 for i, param in enumerate(self.parameters):
 if param.grad is None:
 continue

 grad = param.grad

 # Perbarui estimasi bias momen pertama
 self.m[i] = self.beta1 * self.m[i] + (1 - self.beta1) * grad

72 ANTARMUKA PEMROGR AMAN APLIKASI (API) DEEP LEARNING

 # Perbarui estimasi bias momen kedua
 self.v[i] = self.beta2 * self.v[i] + (1 - self.beta2) * (grad**2)

 # Koreksi bias untuk momen pertama
 m_hat = self.m[i] / (1 - self.beta1**self.t)
 # Koreksi bias untuk momen kedua
 v_hat = self.v[i] / (1 - self.beta2**self.t)

 # Perbarui parameter
 param.data -= self.lr * m_hat / (np.sqrt(v_hat) + self.eps)

Momen pertama membantu melewati area datar dan mengurangi osilasi. Setiap parameter memiliki

learning rate efektif sendiri berdasarkan riwayat gradiennya. Selain itu, koreksi bias memastikan

estimasi akurat di awal pelatihan.

Catatan

Dalam praktiknya, tidak ada pengoptimal yang “terbaik” untuk semua kasus. Pilihan pen­

goptimal bergantung pada:

• Jenis arsitektur (CNN vs RNN vs Transformer)

• Ukuran dataset

• Anggaran komputasi

• Kebutuhan generalisasi vs kecepatan konvergensi

Prinsip dasar: mulai dengan Adam untuk purwarupa cepat, lalu coba SGD+Momentum

untuk generalisasi lebih baik jika ada waktu untuk melakukan tuning. Biasanya Adam saja

sudah cukup.

4.5.5. AdamW

AdamW adalah varian Adam yang memisahkan efek weight decay dari gradien. Hal ini ternyata meng­

hasilkan regularisasi yang lebih efektif dan berdampak baik pada generalisasi model. Model populer

seperti Transformer dilatih dengan pengoptimal ini.

class AdamW(Optimizer):
 def __init__(
 self,
 parameters: Iterable[Tensor],
 lr: float = 0.001,
 betas: tuple[float, float] = (0.9, 0.999),
 eps: float = 1e-8,
 weight_decay: float = 0.01
):
 super().__init__(parameters)
 self.lr = lr
 self.beta1, self.beta2 = betas
 self.eps = eps
 self.weight_decay = weight_decay

ANTARMUKA PEMROGR AMAN APLIKASI (API) DEEP LEARNING 73

 self.t = 0 # time step, akan bertambah tiap `.step()` dieksekusi

 self.m = [np.zeros_like(param.data) for param in self.parameters]
 self.v = [np.zeros_like(param.data) for param in self.parameters]

 def step(self):
 self.t += 1

 for i, param in enumerate(self.parameters):
 if param.grad is None:
 continue

 grad = param.grad

 self.m[i] = self.beta1 * self.m[i] + (1 - self.beta1) * grad
 self.v[i] = self.beta2 * self.v[i] + (1 - self.beta2) * (grad ** 2)

 # Koreksi bias
 m_hat = self.m[i] / (1 - self.beta1 ** self.t)
 v_hat = self.v[i] / (1 - self.beta2 ** self.t)

 # Pembaruan dengan weight decay terpisah (a.l., bukan di gradien)
 param.data -= self.lr * (
 m_hat / (np.sqrt(v_hat) + self.eps) +
 self.weight_decay * param.data
)

4.6. Multi-Layer Perceptron (MLP) dengan API baru

Dengan semua komponen yang telah kita bangun, mari kita mengujinya dengan API tingkat tinggi

kita dengan membangun dan melatih MLP untuk klasifikasi digit tulisan tangan.

4.6.1. Pewarisan kelas Module

Pendekatan pertama adalah membuat kelas MLP yang mewarisi Module. Ini memberikan kontrol

penuh atas arsitektur dan alur data:

import lantern
from lantern.nn import CrossEntropyLoss, Linear, Module, ReLU
from sklearn.datasets import load_digits
from sklearn.preprocessing import OneHotEncoder

from lantern.optim import Adam
from lantern.tensor import Tensor

x, y = load_digits(return_X_y=True)
x = x / x.max()
y = y.reshape(-1, 1) # type:ignore
y_one_hot = OneHotEncoder(sparse_output=False).fit_transform(y)

x = Tensor(x)

74 ANTARMUKA PEMROGR AMAN APLIKASI (API) DEEP LEARNING

y_one_hot = Tensor(y_one_hot)

class MLP(Module):
 def __init__(self):
 super().__init__()

 self.l1 = Linear(64, 256)
 self.l2 = Linear(256, 256)
 self.l3 = Linear(256, 10)
 self.act1 = ReLU()
 self.act2 = ReLU()

 def forward(self, x: Tensor) -> Tensor:
 x = self.act1(self.l1(x))
 x = self.act2(self.l2(x))
 x = self.l3(x)
 return x

model = MLP()
loss_fn = CrossEntropyLoss()
optim = Adam(model.parameters())

for i in range(500):
 optim.zero_grad()

 logits = model(x)
 loss = loss_fn(logits, y_one_hot)
 loss.backward()
 print(loss)

 optim.step()

Pendekatan ini memberikan fleksibilitas maksimal bagi pengguna. Kita bisa menambahkan logika

khusus di metode forward , seperti dropout kondisional atau koneksi lompatan (skip connections).

4.6.2. API Lapisan Sekuensial

Untuk arsitektur yang lebih sederhana dan linear, kita bisa menggunakan Sequential :

model = Sequential(
 Linear(64, 256),
 ReLU(),
 Linear(256, 256),
 ReLU(),
 Linear(256, 10),
)

loss_fn = CrossEntropyLoss()
optim = Adam(model.parameters())

ANTARMUKA PEMROGR AMAN APLIKASI (API) DEEP LEARNING 75

for i in range(500):
 optim.zero_grad()

 logits = model(x)
 loss = loss_fn(logits, y_one_hot)
 loss.backward()
 print(loss)

 optim.step()

API Sequential lebih ringkas untuk arsitektur sederhana, tapi kurang fleksibel. Pilihan antara kedu­

anya tergantung pada kompleksitas model yang dibutuhkan. keduanya juga bisa dikombinasikan satu

sama lain. Misalnya, kita bisa membuat kelompok modul, membungkusnya dalam lapisan sekuensial,

dan menggunakannya secara berulang dalam modul lain.

76 ANTARMUKA PEMROGR AMAN APLIKASI (API) DEEP LEARNING

Bab 5. Lapisan Lanjutan

5.1. Lapisan Konvolusional Dua Dimensi

Lapisan konvolusional adalah komponen penting dalam pada deep learning, terutama untuk pemros­

esan citra dan data yang memiliki struktur spasial. Berbeda dengan lapisan linier yang memperlakukan

setiap piksel secara independen, lapisan konvolusional mempelajari hubungan spasial antar piksel

dengan menggunakan filter (kernel) yang bergeser melintasi citra masukan.

5.1.1. Intuisi dan Motivasi

Dalam pengolahan citra tradisional, filter konvolusi telah lama digunakan untuk deteksi tepian, efek

buram, penajaman, dan berbagai operasi pemrosesan citra lainnya. Deep learning mengadopsi konsep

ini. Bedanya, parameter filter dipelajari secara otomatis melalui proses pelatihan, bukan dirancang

manual.

Gambar 9: Contoh penggunaan gaussian filter untuk menghasilkan citra buram

Secara formal, operasi konvolusi untuk citra multikanal (multi-channel image) didefinisikan oleh

𝑔𝑐out,𝑖,𝑗 = ∑
𝐶in−1

𝑐in=0
∑
𝑘ℎ−1

𝑢=0
∑
𝑘𝑤−1

𝑣=0
𝑥𝑐in,𝑖−𝑢,𝑗−𝑣 ⋅ 𝑤𝑐out,𝑐in,𝑢,𝑣 + 𝑏𝑐out

(5.1)

dengan keterangan variabel-variabel berikut ini

Variabel Keterangan

𝑔 luaran konvolusi

𝑥 citra masukan konvolusi

𝑤 filter konvolusi

𝑏 vektor bias

77

𝐶in jumlah kanal citra masukan

𝐶out jumlah kanal citra luaran

𝑘ℎ tinggi filter konvolusi

𝑘𝑤 lebar filter konvolusi

𝑖, 𝑗 posisi spasial pada luaran

𝑐in, 𝑐out indeks kanal

𝑢, 𝑣 indeks posisi filter

5.1.2. Konvolusi Sebagai Perkalian Matriks

Meskipun konvolusi tampak sebagai operasi yang kompleks, pada implementasinya sering diubah

menjadi perkalian matriks untuk efisiensi komputasi. Transformasi ini melibatkan tiga langkah

utama:

1. Im2Col: Mengubah patches dari citra masukan menjadi kolom-kolom dalam matriks

2. Perkalian matriks: Melakukan perkalian matriks biasa

3. Reshape: Mengatur ulang hasil perkalian menjadi peta fitur berupa tensor ranking 4 (bukan 3

karena kita akan memproses dalam mode batch)

Pendekatan ini memungkinkan pemanfaatan pustaka aljabar linier yang sudah dioptimalkan seperti

BLAS.

5.1.3. Im2Col

Algoritma Im2Col adalah teknik untuk mengubah operasi konvolusi menjadi perkalian matriks. Ide

dasarnya adalah “menghamparkan” tutupan-tutupan (patches) dari citra masukan menjadi kolom

atau baris dalam matriks.

Catatan

Secara historis, pada implementasi awal pustaka deep learning im2col akan menghamparkan

tutupan memanjang sebagai kolom, dan karena itulah prosedur ini disebut im2col, image

patches to columns. Beberapa pustaka deep learning dan implementasi pada buku ini akan

menghamparkan tutupan-tutupan citra sebagai baris.

Untuk setiap posisi jendela geser pada citra masukan, lakukan ekstraksi tutupan berukuran filter dari

citra. Ratakan tutupan menjadi vektor kolom. Kemudian susun semua kolom secara berdampingan

Sebagai contoh, misalkan kita memiliki citra skala keabuan (1 kanal) 4 × 4 dan filter 3 × 3:

Tutupan 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

𝑎 𝑏 𝑐

𝑑 𝑒 𝑓

𝑔 ℎ 𝑖

Gambar 1: Contoh konvolusi pada citra abu berukuran 4 × 4 dengan filter berukuran 3 × 3. Filter akan bergeser satu

langkah ke kanan dan satu langkah ke bawah

78 LAPISAN LANJUTAN

Im2Col akan mengekstraksi 4 tutupan (2 × 2 posisi luaran) seperti ditunjukkan pada Gambar 2.

Tutupan 1 Tutupan 2 Tutupan 3 Tutupan 4

1 2 3

5 6 7

9 10 11

2 3 4

6 7 8

10 11 12

5 6 7

9 10 11

13 14 15

6 7 8

10 11 12

14 15 16

Gambar 2: Tutupan-tutupan berdasarkan oleh jendela filter

Setelah tutupan-tutupan citra dihamparkan menjadi tumpukan baris (matriks berukuran 4 × 9)

dan filter dihamparkan menjadi kolom, bisa dilakukan perkalian matriks biasa, ditunjukkan pada

Gambar 1.

1 2 3 5 6 7 9 10 11

2 3 4 6 7 8 10 11 12

5 6 7 9 10 11 13 14 15

6 7 8 10 11 12 14 15 16

∗

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

ℎ

𝑖

Gambar 1: Perkalian matriks antara citra dan filter yang dihamparkan. Pada contoh ini, hanya ada satu kanal warna pada

citra (derajat keabuan) dan hanya satu filter luaran (respons filter juga memiliki satu kanal)

Contoh di atas hanya untuk satu kanal citra masukan dan luaran. Jika kita memiliki masukan dan

luaran dengan beberapa kanal, ukuran matriks tentu akan berbeda. Untuk masukan dengan, misal­

nya, 3 kanal (citra RGB) berukuran 4×4 dengan filter 3×3 untuk kanal luaran 64:

• Citra masukan berbentuk 1 × 3 × 4 × 4
• Filter berbentuk 64 × 3 × 3 × 3

Im2Col akan menghasilkan tumpukan tutupan berupa matriks dengan bentuk (1×2×2, 3×3×3) =

(4, 27). Setiap baris berisi 27 elemen: 3 kanal × 3×3 kernel = 27 nilai untuk tiap tutupan. Akan ada 4

baris untuk 4 posisi luaran berbentuk 2 × 2 (seperti pada Gambar 2). Untuk luaran multikanal, filter

dihamparkan dan disusun hingga berbentuk (3 × 3 × 3, 64) = (27, 64).

Berikut implementasi im2col:

def im2col(
 input_data: NDArray,
 filter_h: int,
 filter_w: int,
 stride_h: int = 1,
 stride_w: int = 1,
 pad_h: int = 0,
 pad_w: int = 0,

LAPISAN LANJUTAN 79

) -> NDArray:
 N, C, H, W = input_data.shape

 # Hitung dimensi luaran
 out_h = (H + 2 * pad_h - filter_h) // stride_h + 1
 out_w = (W + 2 * pad_w - filter_w) // stride_w + 1

 # Persiapkan padding untuk masukan, namun pertahankan dimensi batch dan
 # dimensi kanal
 img = np.pad(
 input_data, [(0, 0), (0, 0), (pad_h, pad_h), (pad_w, pad_w)], "constant"
)

 # Inisialisasi larik multidimensi untuk tutupan-tutupan dari citra:
 col = np.zeros((N, C, filter_h, filter_w, out_h, out_w))

 # Ekstraksi tutupan-tutupan dengan jendela geser
 for y in range(filter_h):
 y_max = y + stride_h * out_h
 for x in range(filter_w):
 x_max = x + stride_w * out_w
 col[:, :, y, x, :, :] = img[:, :, y:y_max:stride_h, x:x_max:stride_w]

 # Transpose: (N, C, filter_h, filter_w, out_h, out_w) menjadi
 # (N, out_h, out_w, C, filter_h, filter_w)
 # Reshape: Gabungkan posisi spasial (N×out_h×out_w) dan ratakan dimensi filter
 # (C×filter_h×filter_w)
 col = col.transpose(0, 4, 5, 1, 2, 3).reshape(N * out_h * out_w, -1)
 return col

5.1.4. Col2Im

Operasi col2im merupakan transformasi kebalikan dari im2col yang berperan dalam propagasi balik

lapisan konvolusi. Sementara im2col mengekstrak dan menyusun tutupan-tutupan citra menjadi

matriks untuk efisiensi komputasi, col2im melakukan rekonstruksi sebaliknya: mengembalikan rep­

resentasi matriks kolom ke format tensor citra multidimensi aslinya.

Pada konteks konvolusi beberapa piksel muncul di beberapa tutupan karena adanya overlap antar

jendela filter yang bergeser. Fenomena overlap ini memerlukan strategi khusus dalam rekonstruksi,

yaitu dengan mengakumulasi kontribusi dari setiap tutupan yang mengandung piksel tersebut. Proses

akumulasi ini menggambarkan bagaimana gradien dari berbagai posisi luaran konvolusi berkontribusi

terhadap gradien di posisi masukan tertentu.

def col2im(
 col: NDArray,
 input_shape: tuple[int, ...],
 filter_h: int,
 filter_w: int,
 stride_h: int = 1,
 stride_w: int = 1,

80 LAPISAN LANJUTAN

 pad_h: int = 0,
 pad_w: int = 0,
) -> NDArray:
 N, C, H, W = input_shape
 out_h = (H + 2 * pad_h - filter_h) // stride_h + 1
 out_w = (W + 2 * pad_w - filter_w) // stride_w + 1

 col = col.reshape(N, out_h, out_w, C, filter_h, filter_w).transpose(
 0, 3, 4, 5, 1, 2
)

 img = np.zeros((N, C, H + 2 * pad_h + stride_h - 1, W + 2 * pad_w + stride_w - 1))
 for y in range(filter_h):
 y_max = y + stride_h * out_h
 for x in range(filter_w):
 x_max = x + stride_w * out_w
 img[:, :, y:y_max:stride_h, x:x_max:stride_w] += col[:, :, y, x, :, :]

 return img[:, :, pad_h : H + pad_h, pad_w : W + pad_w]

Verifikasi kebenaran implementasi col2im dapat dilakukan dengan menguji sifat inversnya terhadap

im2col. Untuk kasus stride=1 dan padding yang mempertahankan dimensi, aplikasi berurutan im2col

diikuti col2im seharusnya menghasilkan tensor identik dengan masukan awal. Namun, perlu dicatat

bahwa untuk konfigurasi stride lebih dari 1, properti invers sempurna ini tidak selalu terpenuhi karena

adanya subsampling yang menyebabkan hilangnya informasi.

5.1.5. Fungsi Konvolusi

Laluan maju dalam conv2d memanfaatkan transformasi im2col untuk mengubah operasi konvolusi

menjadi perkalian matriks biasa. Filter di-reshape menjadi matriks dengan cara yang kompatibel

dengan luaran im2col. Hal ini memungkinkan dilakukannya operasi GEMM (general matrix mul

tiply) dengan sangat cepat dan efisien oleh pustaka BLAS (atau cuBLAS pada platform CUDA)

untuk menghitung seluruh luaran. Setelah perkalian matriks, hasil di-reshape dan ditransposisi untuk

mendapatkan format tensor luaran dengan ranking 4 sesuai harapan.

Gradien terhadap masukan dihitung dengan menerapkan konvolusi tertransposisi menggunakan

col2im. Gradien terhadap filter dihitung melalui perkalian matriks antara masukan yang telah ditrans­

formasi (col_input) dengan gradien upstream. Untuk bias, gradien diperoleh dengan menjumlahkan

gradien upstream sepanjang dimensi batch dan spasial. Ini menggambarkan bias uang dibagikan

sepanjang seluruh lokasi spasial.

def conv2d(
 input: Tensor,
 weight: Tensor,
 bias: Tensor | None = None,
 stride: int | tuple[int, int] = 1,
 padding: int | tuple[int, int] | str = 0,
) -> Tensor:
 if isinstance(stride, int):

LAPISAN LANJUTAN 81

 stride_h = stride_w = stride
 else:
 stride_h, stride_w = stride

 N, C_in, H, W = input.shape
 C_out, C_in_w, kernel_h, kernel_w = weight.shape

 # Penanganan padding
 if isinstance(padding, str):
 if padding == "valid":
 pad_h = pad_w = 0
 elif padding == "same":
 pad_h = ((H - 1) * stride_h + kernel_h - H) // 2
 pad_w = ((W - 1) * stride_w + kernel_w - W) // 2
 else:
 raise ValueError(f"Unknown padding mode: {padding}")
 elif isinstance(padding, int):
 pad_h = pad_w = padding
 else:
 pad_h, pad_w = padding

 # Hitung ukuran luaran
 H_out = (H + 2 * pad_h - kernel_h) // stride_h + 1
 W_out = (W + 2 * pad_w - kernel_w) // stride_w + 1

 # Forward pass using im2col
 col_input = im2col(input.data, kernel_h, kernel_w, stride_h, stride_w, pad_h,
pad_w)
 col_W = weight.data.reshape(C_out, -1).T

 out = col_input @ col_W
 out = out.reshape(N, H_out, W_out, C_out).transpose(0, 3, 1, 2)

 # Tambahkan bias jika tersedia
 if bias is not None:
 out = out + bias.data.reshape(1, -1, 1, 1)

 requires_grad = (
 input.requires_grad
 or weight.requires_grad
 or (bias is not None and bias.requires_grad)
)
 result = Tensor(out, requires_grad=requires_grad)

 def backward_fn(upstream_grad: NDArray):
 # Gradien terhadap input
 input_grad = None
 if input.requires_grad:
 dout_reshaped = upstream_grad.transpose(0, 2, 3, 1).reshape(-1, C_out)
 dcol = dout_reshaped @ col_W.T

82 LAPISAN LANJUTAN

 input_grad = col2im(
 dcol, input.shape, kernel_h, kernel_w, stride_h, stride_w, pad_h,
pad_w
)

 # Gradien terhadap filter
 weight_grad = None
 if weight.requires_grad:
 dout_reshaped = upstream_grad.transpose(0, 2, 3, 1).reshape(-1, C_out)
 weight_grad = col_input.T @ dout_reshaped
 weight_grad = weight_grad.T.reshape(C_out, C_in_w, kernel_h, kernel_w)

 # Gradien terhadap bias
 bias_grad = None
 if bias is not None and bias.requires_grad:
 bias_grad = upstream_grad.sum(axis=(0, 2, 3))

 return [input_grad, weight_grad, bias_grad]

 result.backward_fn = backward_fn
 result.inputs = [input, weight] if bias is None else [input, weight, bias]

 return result

5.1.6. Modul Conv2d

class Conv2d(Module):
 def __init__(
 self,
 in_channels: int,
 out_channels: int,
 kernel_size: int | tuple[int, int],
 stride: int | tuple[int, int] = 1,
 padding: int | tuple[int, int] | str = 0,
 bias: bool = True,
 padding_mode: str = "zeros",
):
 super().__init__()

 if padding_mode != "zeros":
 raise NotImplementedError(f"padding_mode={padding_mode} is not
implemented")

 self.in_channels = in_channels
 self.out_channels = out_channels
 self.kernel_size = (
 kernel_size
 if isinstance(kernel_size, tuple)
 else (kernel_size, kernel_size)
)

LAPISAN LANJUTAN 83

 self.stride = stride if isinstance(stride, tuple) else (stride, stride)
 self.padding = padding

 # Inisialisasi Kaiming He
 kernel_h, kernel_w = self.kernel_size
 fan_in = in_channels * kernel_h * kernel_w
 std = np.sqrt(2.0 / fan_in)

 self.weight = Tensor(
 np.random.normal(0, std, (out_channels, in_channels, kernel_h, kernel_w)),
 requires_grad=True,
)

 if bias:
 self.bias = Tensor(np.zeros(out_channels), requires_grad=True)
 else:
 self.bias = None

 def forward(self, x: Tensor) -> Tensor:
 return conv2d(
 x,
 self.weight,
 self.bias,
 self.stride,
 self.padding,
)

Inisialisasi parameter dalam Conv2d menggunakan metode inisialisasi Kaiming He initialization [1].

Simpangan baku untuk inisialisasi filter dihitung berdasarkan fan-in, yaitu jumlah koneksi masukan

ke setiap neuron luaran. Untuk konvolusi, fan-in adalah perkalian dari jumlah kanal masukan dengan

ukuran filter. Pendekatan ini membantu menjaga variansi aktivasi agar tetap stabil sepanjang lapisan

dan menghindari masalah hilangnya gradien (vanishing gradients) atau ledakan gradien (gradient

explision).

Catatan

Ingat kembali kita pernah membahas inisialisasi ini sebelumnya pada implementasi lapisan

linier. Bedanya, pada lapisan linier fan-in dan fan-out merujuk pada jumlah neuron. Pada

konvolusi, keduanya merujuk pada jumlah kanal masukan dan luaran.

5.2. Lapisan Pooling

Lapisan berfungsi untuk mengurangi dimensi spasial peta fitur sembari mempertahankan informasi

yang penting. Dalam hal ini, informasi yang dianggap penting adalah nilai maksimal dari pada jendela

geser. Berbeda dengan konvolusi yang mempelajari filter melalui pelatihan, pooling menggunakan

operasi deterministik tanpa parameter yang dapat dipelajari.

Operasi pooling memiliki beberapa manfaat utama, antara lain, mengurangi jumlah parameter

dan komputasi dalam jaringan, membantu model menjadi lebih robust terhadap pergeseran kecil

84 LAPISAN LANJUTAN

dalam masukan, dan mengambil fitur yang paling menonjol dari setiap wilayah pada citra. Operasi

pooling yang paling umum adalah max pooling, yang mengambil nilai maksimum dari setiap jendela.

Untuk citra, ini setara dengan mengambil piksel paling terang dalam setiap wilayah.

Gambar 10: Ilustrasi operasi max pooling 2×2 dengan stride 2 pada peta fitur

5.2.1. Max Pooling dengan Im2Col

Menariknya, kita dapat menggunakan kembali infrastruktur im2col yang sudah kita bangun untuk

konvolusi. Idenya sederhana: ekstrak tutupan seperti biasa, kemudian ambil nilai maksimum dari

setiap tutupan alih-alih melakukan perkalian matriks.

Untuk max pooling dengan filter berukuran spasial 𝑘ℎ × 𝑘𝑤 dan stride (langkah pergeseran)

𝑠ℎ × 𝑠𝑤, ukuran luaran dihitung dengan:

ℎout = ⌊ℎin + 2𝑝ℎ − 𝑘ℎ
𝑠ℎ

⌋ + 1 (5.2)

𝑤out = ⌊𝑤in + 2𝑝𝑤 − 𝑘𝑤
𝑠𝑤

⌋ + 1 (5.3)

dengan ℎin dan 𝑤in adalah tinggi dan lebar citra masukan, 𝑘ℎ dan 𝑘𝑤 adalah ukuran kernel pooling,

𝑝ℎ dan 𝑝𝑤 adalah padding yang ditambahkan, serta ℎout dan 𝑤out adalah dimensi spasial luaran yang

dihasilkan.

Berikut implementasi max pooling menggunakan im2col:

def max_pool2d(
 input: Tensor,
 kernel_size: int | tuple[int, int],
 stride: int | tuple[int, int] | None = None,
 padding: int | tuple[int, int] = 0,
) -> Tensor:
 if isinstance(kernel_size, int):
 kernel_h = kernel_w = kernel_size
 else:
 kernel_h, kernel_w = kernel_size

LAPISAN LANJUTAN 85

 if stride is None:
 stride_h = stride_w = kernel_h
 elif isinstance(stride, int):
 stride_h = stride_w = stride
 else:
 stride_h, stride_w = stride

 if isinstance(padding, int):
 pad_h = pad_w = padding
 else:
 pad_h, pad_w = padding

 N, C, H, W = input.shape
 H_out = (H + 2 * pad_h - kernel_h) // stride_h + 1
 W_out = (W + 2 * pad_w - kernel_w) // stride_w + 1

 # Ekstraksi tutupan
 col = im2col(input.data, kernel_h, kernel_w, stride_h, stride_w, pad_h, pad_w)
 col = col.reshape(N * H_out * W_out, C, kernel_h * kernel_w)

 # Max pooling
 max_idx = col.argmax(axis=2)
 out = col.max(axis=2)
 out = out.reshape(N, H_out, W_out, C).transpose(0, 3, 1, 2)

 result = Tensor(out, requires_grad=input.requires_grad)

 def backward_fn(upstream_grad: NDArray) -> list[NDArray | None]:
 if not input.requires_grad:
 return [None]

 # Siapkan gradien
 dout = upstream_grad.transpose(0, 2, 3, 1).reshape(-1)

 # Buat matriks gradien jarang (sparse)
 # Kita perlu menempatkan gradien pada posisi yang ditunjukkan oleh max_idx
 dmax = np.zeros((N * H_out * W_out, C * kernel_h * kernel_w))

 # Penyebaran tervektorisasi menggunakan indeks lanjutan
 rows = np.arange(N * H_out * W_out)[:, None]
 cols = np.arange(C)[None, :] * kernel_h * kernel_w + max_idx
 dmax[rows, cols] = dout.reshape(N * H_out * W_out, C)

 # Konversi kembali ke bentuk citra
 dx = col2im(
 dmax, input.shape, kernel_h, kernel_w, stride_h, stride_w, pad_h, pad_w
)

 return [dx]

86 LAPISAN LANJUTAN

 result.backward_fn = backward_fn
 result.inputs = [input]

 return result

5.2.2. Fungsi Laluan Mundur untuk Max Pooling

Laluan mundur untuk max pooling memiliki karakteristik unik: gradien hanya mengalir melalui

elemen yang memiliki nilai maksimum dalam setiap jendela pooling. Elemen lain menerima gradien

nol.

Catatan

Dalam implementasi di atas, kita menggunakan array max_idx untuk melacak posisi nilai

maksimum di setiap jendela. Saat propagasi balik, gradien dari lapisan berikutnya diteruskan

hanya ke posisi-posisi tersebut.

Pendekatan vektorisasi yang kita gunakan menghindari iterasi eksplisit dengan memanfaatkan

advanced indexing NumPy:

Penyebaran tervektorisasi menggunakan pengindeksan lanjutan
rows = np.arange(N * H_out * W_out)[:, None]
cols = np.arange(C)[None, :] * kernel_h * kernel_w + max_idx
dmax[rows, cols] = dout.reshape(N * H_out * W_out, C)

Teknik ini jauh lebih efisien daripada iterasi manual melalui setiap posisi.

5.2.3. Modul MaxPool2d

Seperti halnya Conv2d, kita juga membuat kelas MaxPool2d yang mengikuti API Module:

class MaxPool2d(Module):
 def __init__(
 self,
 kernel_size: int | tuple[int, int],
 stride: int | tuple[int, int] | None = None,
 padding: int | tuple[int, int] = 0,
):
 super().__init__()

 self.kernel_size = (
 kernel_size
 if isinstance(kernel_size, tuple)
 else (kernel_size, kernel_size)
)
 self.stride = stride
 self.padding = padding

 def forward(self, x: Tensor) -> Tensor:
 return max_pool2d(x, self.kernel_size, self.stride, self.padding)

LAPISAN LANJUTAN 87

Perhatikan bahwa MaxPool2d tidak memiliki parameter yang dapat dipelajari, sehingga kita tidak

perlu menginisialisasi bobot atau bias.

5.2.4. Jenis Pooling Lainnya

Meskipun max pooling adalah yang paling populer, ada beberapa variasi pooling lainnya:

1. Average Pooling: Mengambil rata-rata nilai dalam setiap jendela

2. Global Average Pooling: Mengambil rata-rata seluruh peta fitur menjadi satu nilai per kanal

3. Adaptive Pooling: Menyesuaikan ukuran kernel secara otomatis untuk menghasilkan ukuran

luaran yang diinginkan

Implementasi average pooling serupa dengan max pooling, hanya mengganti operasi max dengan

mean dan menyesuaikan propagasi mundurnya.

5.3. Lapisan Normalisasi

Lapisan normalisasi dalam arsitektur deep learning membantu menstabilkan dan mempercepat

proses pelatihan. Ide dasarnya sederhana: normalisasi nilai aktivasi untuk mengurangi pergeseran

distribusi internal (internal covariate shift) yang terjadi selama pelatihan.

Ketika kita melatih model deep learning, distribusi masukan ke setiap lapisan berubah seiring

pembaruan parameter lapisan sebelumnya. Fenomena ini memaksa setiap lapisan untuk terus

beradaptasi dengan distribusi masukan yang berubah, memperlambat konvergensi dan membuat

pelatihan lebih sulit.

5.3.1. Normalisasi Batch

Normalisasi batch (batch normalization) menormalkan aktivasi di sepanjang dimensi batch. Untuk

memahami operasinya, perhatikan tensor masukan 𝐗 ∈ ℝ𝑚×𝑑 dengan 𝑚 sampel dan 𝑑 fitur. Nor­

malisasi batch menghitung statistik untuk setiap fitur di sepanjang dimensi batch.

Untuk fitur ke-𝑗 (kolom ke-𝑗 dari 𝐗), dengan elemen-elemen {𝑥1𝑗, 𝑥2𝑗,…, 𝑥𝑚𝑗}:

𝜇𝑗 = 1
𝑚

∑
𝑚

𝑖=1
𝑥𝑖𝑗

𝜎2
𝑗 = 1

𝑚
∑
𝑚

𝑖=1
(𝑥𝑖𝑗 − 𝜇𝑗)

2

𝑥𝑖𝑗 =
𝑥𝑖𝑗 − 𝜇𝑗

√𝜎2
𝑗 + 𝜀

𝑦𝑖𝑗 = 𝛾𝑗𝑥𝑖𝑗 + 𝛽𝑗

(5.4)

dengan 𝛾𝑗 dan 𝛽𝑗 adalah parameter yang dapat dipelajari untuk fitur ke-𝑗. Operasi ini dilakukan untuk

setiap fitur 𝑗 = 1,…, 𝑑.

Implementasi normalisasi batch harus menangani dua mode berbeda: mode latih dan mode eval­

uasi. Saat latih, kita menghitung statistik dari batch saat ini. Saat evaluasi, kita menggunakan statistik

yang telah diakumulasi selama pelatihan.

88 LAPISAN LANJUTAN

class BatchNorm1d(Module):
 def __init__(self, num_features: int, eps: float = 1e-5, momentum: float = 0.1):
 super().__init__()
 self.num_features = num_features
 self.eps = eps
 self.momentum = momentum

 # Parameter yang dapat dipelajari
 self.gamma = Tensor(np.ones(num_features), requires_grad=True)
 self.beta = Tensor(np.zeros(num_features), requires_grad=True)

 # Running statistics untuk mode evaluasi
 self.running_mean = np.zeros(num_features)
 self.running_var = np.ones(num_features)

 def forward(self, x: Tensor) -> Tensor:
 if self.training:
 # Hitung statistik batch
 batch_mean = tensor_mean(x, dim=0, keepdims=True)
 batch_var = tensor_mean((x - batch_mean) * (x - batch_mean),
 dim=0, keepdims=True)

 # Update running statistics (tanpa gradien)
 self.running_mean = (1 - self.momentum) * self.running_mean + \
 self.momentum * batch_mean.data.squeeze()
 self.running_var = (1 - self.momentum) * self.running_var + \
 self.momentum * batch_var.data.squeeze()

 # Normalisasi
 x_norm = (x - batch_mean) / sqrt(batch_var + self.eps)
 else:
 # Gunakan running statistics
 mean = Tensor(self.running_mean.reshape(1, -1))
 var = Tensor(self.running_var.reshape(1, -1))
 x_norm = (x - mean) / sqrt(var + self.eps)

 # Skala dan geser
 return self.gamma * x_norm + self.beta

Untuk lapisan konvolusional, kita perlu versi 2D yang menormalkan sepanjang dimensi batch dan

spasial:

class BatchNorm2d(Module):
 def __init__(self, num_features: int, eps: float = 1e-5, momentum: float = 0.1):
 super().__init__()
 self.num_features = num_features
 self.eps = eps
 self.momentum = momentum

 # Parameter per kanal

LAPISAN LANJUTAN 89

 self.gamma = Tensor(np.ones(num_features), requires_grad=True)
 self.beta = Tensor(np.zeros(num_features), requires_grad=True)

 # Running statistics per kanal
 self.running_mean = np.zeros(num_features)
 self.running_var = np.ones(num_features)

 def forward(self, x: Tensor) -> Tensor:
 # x shape: (batch, channels, height, width)
 if self.training:
 # Statistik per kanal: mean dan var sepanjang batch, height, width
 batch_mean = tensor_mean(x, dim=(0, 2, 3), keepdims=True)
 batch_var = tensor_mean((x - batch_mean) * (x - batch_mean),
 dim=(0, 2, 3), keepdims=True)

 # Update running statistics
 self.running_mean = (1 - self.momentum) * self.running_mean + \
 self.momentum * batch_mean.data.squeeze()
 self.running_var = (1 - self.momentum) * self.running_var + \
 self.momentum * batch_var.data.squeeze()

 x_norm = (x - batch_mean) / sqrt(batch_var + self.eps)
 else:
 # Reshape untuk broadcasting
 mean = Tensor(self.running_mean.reshape(1, -1, 1, 1))
 var = Tensor(self.running_var.reshape(1, -1, 1, 1))
 x_norm = (x - mean) / sqrt(var + self.eps)

 # Reshape gamma dan beta untuk broadcasting
 gamma = self.gamma.reshape(1, -1, 1, 1)
 beta = self.beta.reshape(1, -1, 1, 1)

 return gamma * x_norm + beta

Implementasi kita menyimpan running_mean dan running_var sebagai larik NumPy array, bukan

Tensor. Ini karena kedua statistik tersebut tidak perlu gradien dan hanya digunakan saat inferensi.

5.3.2. Normalisasi Lapisan

Normalisasi lapisan (layer normalization) menormalkan aktivasi di sepanjang dimensi fitur alih-alih

dimensi batch. Ini membuatnya lebih cocok untuk arsitektur rekuren dan transformer di mana ukuran

batch bisa sangat kecil atau bahkan 1.

Untuk masukan 𝐱 ∈ ℝ𝑑, normalisasi lapisan menghitung:

90 LAPISAN LANJUTAN

𝜇 = 1
𝑑

∑
𝑑

𝑖=1
𝑥𝑖

𝜎2 = 1
𝑑

∑
𝑑

𝑖=1
(𝑥𝑖 − 𝜇)2

𝐱̂ = 𝐱 − 𝜇√
𝜎2 + 𝜀

𝐲 = 𝛄 ⊙ 𝐱̂ + 𝛃

(5.5)

Perbedaan utama dengan batch normalisasi batch adalah statistik dihitung per sampel, bukan per

batch. Ini membuat layer norm tidak bergantung pada ukuran batch dan tidak memerlukan statistik

running untuk mode evaluasi.

class LayerNorm(Module):
 def __init__(self, normalized_shape: int | tuple[int, ...], eps: float = 1e-5):
 super().__init__()
 if isinstance(normalized_shape, int):
 normalized_shape = (normalized_shape,)
 self.normalized_shape = normalized_shape
 self.eps = eps

 self.gamma = Tensor(np.ones(normalized_shape), requires_grad=True)
 self.beta = Tensor(np.zeros(normalized_shape), requires_grad=True)

 def forward(self, x: Tensor) -> Tensor:
 ndim = len(self.normalized_shape)
 axes = tuple(range(-ndim, 0))

 mean = x.mean(dim=axes, keepdims=True)
 var = ((x - mean) * (x - mean)).mean(dim=axes, keepdims=True)

 x_norm = (x - mean) / sqrt(var + self.eps)

 return self.gamma * x_norm + self.beta

Pendalaman

Ada perdebatan dalam komunitas tentang penempatan normalisasi lapisan: pre-norm

(sebelum sub-lapisan) vs post-norm (setelah sub-lapisan). Pre-norm cenderung lebih stabil

untuk model yang sangat dalam, sementara post-norm sering memberikan performa akhir

yang lebih baik dengan tuning yang tepat.

5.4. Lapisan Rekuren

Lapisan rekuren dirancang untuk memproses data sekuensial seperti teks, suara, atau deret waktu.

Berbeda dengan lapisan laluan maju biasa yang memproses setiap masukan secara independen (seperti

pada lapisan linier dan konvolusi), lapisan rekuren memiliki melibatkan informasi dari langkah waktu

sebelumnya untuk melakukan pemrosesan pada langkah waktu saat ini.

LAPISAN LANJUTAN 91

5.4.1. Neural Network Rekuren (Recurrent Neural Network) “Vanila”

RNN vanila merupakan bentuk paling sederhana dari jaringan rekuren. Pada setiap langkah waktu

𝑡, RNN menerima masukan 𝐱𝑡 dan hidden state sebelumnya 𝐡𝑡−1, kemudian menghasilkan hidden

state baru 𝐡𝑡. Secara matematis, operasi RNN didefinisikan sebagai:

𝐡𝑡 = tanh(𝐖𝑥ℎ𝐱𝑡 + 𝐖ℎℎ𝐡𝑡−1 + 𝐛ℎ)
𝐲𝑡 = 𝐖ℎ𝑦𝐡𝑡 + 𝐛𝑦

(5.6)

dengan 𝐖𝑥ℎ adalah matriks bobot input-to-hidden, 𝐖ℎℎ adalah matriks bobot hidden-to-hidden,

dan 𝐖ℎ𝑦 adalah matriks bobot hidden-to-output.

class RNNCell(Module):
 def __init__(self, input_size: int, hidden_size: int):
 super().__init__()
 self.input_size = input_size
 self.hidden_size = hidden_size

 # Input to hidden
 self.w_ih = Tensor(
 np.random.randn(input_size, hidden_size) * 0.01,
 requires_grad=True
)
 # Hidden to hidden
 self.w_hh = Tensor(
 np.random.randn(hidden_size, hidden_size) * 0.01,
 requires_grad=True
)
 # Bias
 self.b_h = Tensor(
 np.zeros(hidden_size),
 requires_grad=True
)

 def forward(self, x: Tensor, h_prev: Tensor) -> Tensor:
 # h_t = tanh(W_ih @ x_t + W_hh @ h_prev + b_h)
 return tanh(x @ self.w_ih + h_prev @ self.w_hh + self.b_h)

class RNN(Module):
 def __init__(self, input_size: int, hidden_size: int, num_layers: int = 1):
 super().__init__()
 self.input_size = input_size
 self.hidden_size = hidden_size
 self.num_layers = num_layers

 # Tumpuk RNN cells
 self.cells: list[RNNCell] = []
 for i in range(num_layers):
 layer_input_size = input_size if i == 0 else hidden_size
 cell = RNNCell(layer_input_size, hidden_size)

92 LAPISAN LANJUTAN

 setattr(self, f"cell_{i}", cell)
 self.cells.append(cell)

 def forward(self, x: Tensor, h_0: Tensor | None = None) -> tuple[Tensor, Tensor]:
 batch_size, seq_len, _ = x.shape

 # Inisialisasi hidden state mula-mula
 if h_0 is None:
 h_0 = Tensor(np.zeros((self.num_layers, batch_size, self.hidden_size)))

 # Pemrosesan tiap langkah waktu
 outputs = []
 h_t = h_0

 for t in range(seq_len):
 # Seperti yang sudah kita implementasikan, indexing ini
 # memiliki backward_fn!
 x_t = x[:, t, :] # (batch, input_size)

 # Pemrosesan tiap lapisan
 h_t_new = []
 for layer in range(self.num_layers):
 cell = self.cells[layer]
 h_prev = h_t[layer, :, :]
 h_curr = cell(x_t if layer == 0 else h_t_new[-1], h_prev)
 h_t_new.append(h_curr)

 h_t = stack(h_t_new) # (num_layers, batch, hidden_size)
 outputs.append(h_t_new[-1]) # Gunakan luaran dari lapisan sebelumnya

 output = stack(outputs, dim=1) # (batch, seq_len, hidden_size)
 return output, h_t

Catatan

Perhatikan bahwa kita menggunakan setattr untuk mendaftarkan cells sebagai submodul.

Alasannya adalah kita membuat cells dalam perulangan dengan jumlah dinamis. Python

tidak mengizinkan kita menulis self.cell_{i} = cell karena {i} bukan sintaks yang valid.

Dengan setattr(self, f'cell_{i}', cell) , kita bisa membuat nama atribut secara dinamis

dalam perulangan. Hasilnya sama, yaitu setiap cell tetap terdaftar di modul dan parameternya

terdeteksi oleh pengoptimal.

Masalah utama RNN vanila adalah vanishing gradient dan exploding gradient saat memproses

sekuens panjang. Gradien cenderung mengecil atau membesar secara eksponensial saat dipropagasi

balik melalui banyak langkah waktu.

LAPISAN LANJUTAN 93

5.4.2. Long Short Term Memory (LSTM)

Long short term memory (LSTM) dikembangkan untuk menanggulangi permasalahan gradien yang

menghilang, yang dimiliki RNN. LSTM memanfaatkan mekanisme gerbang (gate) untuk menyaring

informasi pada langkah waktu mana yang layak dijaga dan mana yang layak dilupakan. Ada 4 gerbang

yang dimiliki oleh LSTM:

LSTM memiliki arsitektur yang lebih kompleks dibandingkan RNN vanila. Arsitektur ini terdiri

dari tiga gerbang utama dan satu cell state:

• Forget gate: Menentukan informasi mana dari cell state sebelumnya yang perlu dilupakan

• Input gate: Menentukan nilai-nilai baru mana yang akan disimpan dalam cell state

• Output gate: Menentukan bagian mana dari cell state yang akan dijadikan luaran sebagai hidden

state

Untuk setiap langkah waktu 𝑡, LSTM menghitung:

𝐟𝑡 = 𝜎(𝐖𝑓 ⋅ [𝐡𝑡−1, 𝐱𝑡] + 𝐛𝑓) (Forget gate)

𝐢𝑡 = 𝜎(𝑊𝑖 ⋅ [𝐡𝑡−1, 𝐱𝑡] + 𝐛𝑖) (Input gate)

𝐜𝑡 = tanh(𝐖𝑐 ⋅ [𝐡𝑡−1, 𝐱𝑡] + 𝐛𝑐) (Kandidat cell state)

𝐜𝑡 = 𝐟𝑡 ⊙ 𝐜𝑡−1 + 𝐢𝑡 ⊙ 𝐜𝑡 (Cell state baru)

𝐨𝑡 = 𝜎(𝐖𝑜 ⋅ [𝐡𝑡−1, 𝐱𝑡] + 𝐛𝑜) (Output gate)

𝐡𝑡 = 𝐨𝑡 ⊙ tanh(𝐜𝑡) (Hidden state baru)

(5.7)

di mana 𝜎 adalah fungsi sigmoid, ⊙ adalah perkalian antar-elemen, dan [𝐡{𝑡−1}, 𝐱𝑡] adalah peng­

gabungan (concatenation) dari hidden state sebelumnya dan masukan saat ini.

class LSTMCell(Module):
 def __init__(self, input_size: int, hidden_size: int):
 super().__init__()
 self.input_size = input_size
 self.hidden_size = hidden_size

 # Gabungkan semua gerbang dalam satu transformasi linear untuk efisiensi
 # Urutan: forget, input, cell, output
 self.i2h = Linear(input_size, 4 * hidden_size)
 self.h2h = Linear(hidden_size, 4 * hidden_size, bias=False)

 self.reset_parameters()

 def reset_parameters(self):
 # Inisialisasi Xavier untuk weight
 std = (2.0 / (self.input_size + self.hidden_size)) ** 0.5
 for param in self.parameters():
 param.data = np.random.normal(0, std, param.data.shape)

 # Inisialisasi bias forget gate ke 1 (standar praktik)
 forget_bias_start = self.hidden_size
 forget_bias_end = 2 * self.hidden_size

94 LAPISAN LANJUTAN

 self.i2h.bias.data[forget_bias_start:forget_bias_end] = 1.0

 def forward(self, x: Tensor, hidden: tuple[Tensor, Tensor]) -> tuple[Tensor,
Tensor]:
 h_prev, c_prev = hidden

 # Transformasi linear untuk masukan dan hidden state
 gi = self.i2h(x) # gate masukan
 gh = self.h2h(h_prev) # gate hidden
 i_f, i_i, i_g, i_o = split(gi, 4, dim=1)
 h_f, h_i, h_g, h_o = split(gh, 4, dim=1)

 # Hitung gerbang-gerbang
 forget_gate = sigmoid(i_f + h_f)
 input_gate = sigmoid(i_i + h_i)
 cell_gate = tanh(i_g + h_g)
 output_gate = sigmoid(i_o + h_o)

 # Update cell state dan hidden state
 c_new = forget_gate * c_prev + input_gate * cell_gate
 h_new = output_gate * tanh(c_new)

 return h_new, c_new

Perhatikan bahwa alih-alih membuat empat transformasi linier terpisah untuk setiap gerbang seperti

ini

self.forget_gate = Linear(input_size, hidden_size)
self.input_gate = Linear(input_size, hidden_size)
self.cell_gate = Linear(input_size, hidden_size)
self.output_gate = Linear(input_size, hidden_size)

Kita menggabungkan semuanya dalam dua transformasi besar dengan hasil yang identik:

self.i2h = Linear(input_size, 4 * hidden_size) # input-to-hidden
self.h2h = Linear(hidden_size, 4 * hidden_size, bias=False) # hidden-to-hidden

Dengan begini, kita bisa mengurangi operasi matriks, yaitu empat perkalian matriks kecil diganti

dengan dua perkalian matriks besar. Ini menguntungkan kita bila menggunakan BLAS di mana ia

bekerja lebih efisien untuk matriks besar.

Kemudian kita implementasikan pada kode python:

class LSTM(Module):
 def __init__(
 self,
 input_size: int,
 hidden_size: int,
 num_layers: int = 1
):

LAPISAN LANJUTAN 95

 super().__init__()
 self.input_size = input_size
 self.hidden_size = hidden_size
 self.num_layers = num_layers

 # Buat LSTM cells untuk setiap layer
 self.cells = []
 for layer in range(num_layers):
 layer_input_size = input_size if layer == 0 else hidden_size
 cell = LSTMCell(layer_input_size, hidden_size)
 self.cells.append(cell)
 setattr(self, f'cell_{layer}', cell)

 def forward(
 self,
 x: Tensor,
 hidden: tuple[Tensor, Tensor] | None = None
) -> tuple[Tensor, tuple[Tensor, Tensor]]:
 batch_size, seq_len, _ = x.shape

 # Inisialisasi hidden state jika tidak diberikan
 if hidden is None:
 h_t = zeros((self.num_layers, batch_size, self.hidden_size))
 c_t = zeros((self.num_layers, batch_size, self.hidden_size))
 else:
 h_t, c_t = hidden

 # Proses setiap langkah waktu
 outputs = []
 for t in range(seq_len):
 x_t = x[:, t, :] # (batch, input_size)

 # Proses tiap layer
 h_t_new = []
 c_t_new = []
 for layer in range(self.num_layers):
 cell = self.cells[layer]
 h_prev = h_t[layer, :, :]
 c_prev = c_t[layer, :, :]

 # Masukan ke layer ini adalah luaran layer sebelumnya atau masukan asli
 layer_input = x_t if layer == 0 else h_t_new[-1]

 h_curr, c_curr = cell(layer_input, (h_prev, c_prev))
 h_t_new.append(h_curr)
 c_t_new.append(c_curr)

 h_t = stack(h_t_new) # (num_layers, batch, hidden_size)
 c_t = stack(c_t_new) # (num_layers, batch, hidden_size)

96 LAPISAN LANJUTAN

 outputs.append(h_t_new[-1]) # Luaran dari layer terakhir

 output = stack(outputs, dim=1) # (batch, seq_len, hidden_size)

 return output, (h_t, c_t)

5.4.3. Gated Recurrent Unit (GRU)

Gated recurrent unit (GRU) adalah varian arsitektur rekuren yang diperkenalkan oleh Cho et al.

[7] sebagai alternatif yang lebih sederhana dari LSTM. GRU mempertahankan kemampuan untuk

menangani dependensi jangka panjang namun dengan arsitektur yang lebih ringkas. Perbedaan

utamanya adalah GRU menggabungkan forget gate dan input gate menjadi satu update gate, serta

menggabungkan cell state dan hidden state.

Arsitektur GRU hanya memiliki dua gerbang:

• Update gate (𝑧𝑡): Menentukan seberapa banyak informasi dari langkah waktu sebelumnya yang

dipertahankan

• Reset gate (𝑟𝑡): Mengontrol seberapa banyak informasi masa lalu yang diabaikan saat menghitung

kandidat hidden state

Secara matematis, operasi GRU pada langkah waktu 𝑡 adalah:

𝐫𝑡 = 𝜎(𝐖𝑟 ⋅ [𝐡𝑡−1, 𝐱𝑡] + 𝐛𝑟) (Reset gate)

𝐳𝑡 = 𝜎(𝐖𝑧 ⋅ [𝐡𝑡−1, 𝐱𝑡] + 𝐛𝑧) (Update gate)

𝐡̃𝑡 = tanh(𝐖ℎ ⋅ [𝐫𝑡 ⊙ 𝐡𝑡−1, 𝐱𝑡] + 𝐛ℎ) (Kandidat hidden state)

𝐡𝑡 = (1 − 𝐳𝑡) ⊙ 𝐡𝑡−1 + 𝐳𝑡 ⊙ 𝐡̃𝑡 (Hidden state baru)

(5.8)

Perhatikan bagaimana update gate 𝐳𝑡 berfungsi sebagai interpolasi linier antara hidden state sebelum­

nya dan kandidat baru. Ketika 𝐳𝑡 mendekati 0, GRU mempertahankan informasi lama sepenuhnya.

Sebaliknya, ketika 𝐳𝑡 mendekati 1, GRU mengganti hidden state dengan informasi baru.

class GRUCell(Module):
 def __init__(self, input_size: int, hidden_size: int):
 super().__init__()
 self.input_size = input_size
 self.hidden_size = hidden_size

 # Gabungkan reset dan update gates untuk efisiensi
 # Urutan: reset, update
 self.i2h = Linear(input_size, 2 * hidden_size)
 self.h2h = Linear(hidden_size, 2 * hidden_size, bias=False)

 # Kandidat hidden state
 self.i2n = Linear(input_size, hidden_size)
 self.h2n = Linear(hidden_size, hidden_size, bias=False)

 self.reset_parameters()

LAPISAN LANJUTAN 97

 def reset_parameters(self):
 # Inisialisasi Xavier
 std = (2.0 / (self.input_size + self.hidden_size)) ** 0.5
 for param in self.parameters():
 param.data = np.random.normal(0, std, param.data.shape)

 def forward(self, x: Tensor, h_prev: Tensor) -> Tensor:
 # Hitung reset dan update gates
 gi = self.i2h(x)
 gh = self.h2h(h_prev)
 i_r, i_z = split(gi, 2, dim=1)
 h_r, h_z = split(gh, 2, dim=1)

 reset_gate = sigmoid(i_r + h_r)
 update_gate = sigmoid(i_z + h_z)

 # Kandidat hidden state dengan reset gate
 n_t = tanh(self.i2n(x) + self.h2n(reset_gate * h_prev))

 # Interpolasi antara hidden state lama dan kandidat baru
 h_new = (1 - update_gate) * h_prev + update_gate * n_t

 return h_new

Implementasi GRUCell menggunakan strategi yang sama dengan LSTM untuk efisiensi, yaitu

menggabungkan transformasi linier untuk kedua gerbang. Perhatikan juga penggunaan reset gate

pada perhitungan kandidat hidden state. Operasi reset_gate * h_prev memungkinkan model untuk

“melupakan” bagian tertentu dari hidden state sebelumnya saat menghitung kandidat baru.

Berikut implementasi modul utama GRU:

class GRU(Module):
 def __init__(self, input_size: int, hidden_size: int, num_layers: int = 1):
 super().__init__()
 self.input_size = input_size
 self.hidden_size = hidden_size
 self.num_layers = num_layers

 # Buat GRU cells untuk setiap lapisan
 self.cells = []
 for layer in range(num_layers):
 layer_input_size = input_size if layer == 0 else hidden_size
 cell = GRUCell(layer_input_size, hidden_size)
 self.cells.append(cell)
 setattr(self, f'cell_{layer}', cell)

 def forward(
 self,
 x: Tensor,
 h_0: Tensor | None = None

98 LAPISAN LANJUTAN

) -> tuple[Tensor, Tensor]:
 batch_size, seq_len, _ = x.shape

 # Inisialisasi hidden state jika tidak diberikan
 if h_0 is None:
 h_t = Tensor(np.zeros((self.num_layers, batch_size, self.hidden_size)))
 else:
 h_t = h_0

 # Proses setiap langkah waktu
 outputs = []
 for t in range(seq_len):
 x_t = x[:, t, :] # (batch, input_size)

 # Proses tiap lapisan
 h_t_new = []
 for layer in range(self.num_layers):
 cell = self.cells[layer]
 h_prev = h_t[layer, :, :]

 # Masukan ke lapisan ini adalah luaran lapisan sebelumnya
 # atau masukan awal
 layer_input = x_t if layer == 0 else h_t_new[-1]

 h_curr = cell(layer_input, h_prev)
 h_t_new.append(h_curr)

 h_t = stack(h_t_new) # (num_layers, batch, hidden_size)
 outputs.append(h_t_new[-1]) # Luaran dari layer terakhir

 output = stack(outputs, dim=1) # (batch, seq_len, hidden_size)

 return output, h_t

Kesederhanaan GRU dibandingkan LSTM membuatnya lebih cepat untuk dilatih dan membu­

tuhkan parameter yang lebih sedikit. Dalam praktiknya, performa GRU sering kali sebanding dengan

LSTM untuk berbagai tugas pemrosesan sekuens [8]. Pilihan antara LSTM dan GRU juga bergan­

tung pada dataset spesifik dan kebutuhan komputasi. Untuk dataset yang lebih kecil atau ketika

kecepatan pelatihan menjadi prioritas, GRU sering menjadi pilihan yang lebih baik.

Catatan

Meskipun GRU memiliki parameter yang lebih sedikit dibandingkan LSTM, mekanisme

gerbangnya tetap efektif dalam menangani masalah gradien yang menghilang. Reset gate

memungkinkan model untuk membuang informasi yang tidak relevan, sementara update

gate memungkinkan propagasi gradien jangka panjang dengan mengontrol seberapa banyak

informasi yang dipertahankan dari langkah waktu sebelumnya.

LAPISAN LANJUTAN 99

5.5. Lapisan Attention

Mekanisme attention merupakan salah satu inovasi terpenting dalam arsitektur deep learning modern.

Konsep ini pertama kali diperkenalkan oleh Bahdanau et al. [9] untuk mengatasi keterbatasan

arsitektur encoder-decoder tradisional dalam menerjemahkan kalimat panjang. Ide dasarnya sederhana

namun powerful: alih-alih memaksa model untuk mengompresi seluruh informasi masukan ke dalam

satu vektor hidden state tetap, attention memungkinkan model untuk “memperhatikan” bagian-

bagian relevan dari masukan secara dinamis.

5.5.1. Motivasi dan Intuisi

Bayangkan kita sedang menerjemahkan kalimat “The agreement on the European Economic Area was

signed in August 1992” ke bahasa Indonesia. Saat menerjemahkan kata “ditandatangani”, Anda secara

alami akan fokus pada kata “signed” dalam kalimat sumber. Inilah esensi dari mekanisme attention:

memberikan bobot perhatian yang berbeda pada bagian-bagian masukan berdasarkan relevansinya

terhadap langkah pemrosesan saat ini.

Pada arsitektur seq2seq tradisional dengan LSTM, seluruh kalimat sumber harus dikodekan men­

jadi satu vektor context berukuran tetap. Ini menjadi hambatan informasi, terutama untuk sekuens

panjang. Attention mengatasi masalah ini dengan mempertahankan akses ke semua hidden state dari

encoder dan menghitung kombinasi tertimbang yang relevan untuk setiap langkah dekoding.

5.5.2. Attention Dasar: Bahdanau Attention

Mekanisme attention Bahdanau menghitung skor relevansi antara hidden state decoder saat ini dengan

setiap hidden state encoder. Skor-skor ini kemudian dinormalisasi menggunakan softmax untuk

menghasilkan bobot attention.

Secara formal, untuk hidden state decoder 𝐬𝑡 pada langkah waktu 𝑡 dan hidden state encoder 𝐡𝑖

untuk posisi masukan 𝑖, kita hitung:

𝑒𝑡𝑖 = 𝑓att(𝐬𝑡−1,𝐡𝑖) (Skor attention)

𝛼𝑡𝑖 = exp(𝑒𝑡𝑖)
∑𝑇

𝑗=1 exp(𝑒𝑡𝑗)
(Bobot attention)

𝐜𝑡 = ∑
𝑇

𝑖=1
𝛼𝑡𝑖𝐡𝑖 (Vektor context)

(5.9)

dengan 𝑓att adalah fungsi skor yang dapat diimplementasikan dengan berbagai cara. Bahdanau

menggunakan feed-forward network satu lapis:

𝑓att(𝐬𝑡−1,𝐡𝑖) = 𝐯𝖳 tanh(𝐖𝑠𝐬𝑡−1 + 𝐖ℎ𝐡𝑖) (5.10)

class BahdanauAttention(Module):
 def __init__(self, hidden_size: int, attention_size: int):
 super().__init__()
 self.hidden_size = hidden_size
 self.attention_size = attention_size

 # Proyeksi untuk hidden state decoder

100 LAPISAN LANJUTAN

 self.W_s = Linear(hidden_size, attention_size, bias=False)
 # Proyeksi untuk hidden state encoder
 self.W_h = Linear(hidden_size, attention_size, bias=False)
 # Vektor untuk menghitung skor akhir
 self.v = Linear(attention_size, 1, bias=False)

 def forward(
 self,
 decoder_hidden: Tensor, # (batch, hidden_size)
 encoder_outputs: Tensor # (batch, seq_len, hidden_size)
) -> tuple[Tensor, Tensor]:
 batch_size, seq_len, _ = encoder_outputs.shape

 # Proyeksikan decoder hidden state
 # (batch, attention_size) -> (batch, 1, attention_size)
 s_proj = self.W_s(decoder_hidden).unsqueeze(1)

 # Proyeksikan semua encoder outputs
 # (batch, seq_len, hidden_size) -> (batch, seq_len, attention_size)
 h_proj = self.W_h(encoder_outputs)

 # Hitung skor attention
 # (batch, seq_len, attention_size)
 combined = tanh(s_proj + h_proj)
 # (batch, seq_len, 1) -> (batch, seq_len)
 scores = self.v(combined).squeeze(-1)

 # Normalisasi dengan softmax
 attention_weights = softmax(scores, dim=1)

 # Hitung context vector sebagai weighted sum
 # (batch, seq_len) -> (batch, seq_len, 1)
 attention_weights_expanded = attention_weights.unsqueeze(-1)
 # (batch, seq_len, hidden_size) * (batch, seq_len, 1) -> sum -> (batch,
hidden_size)
 context = (encoder_outputs * attention_weights_expanded).sum(dim=1)

 return context, attention_weights

Implementasi di atas menunjukkan bagaimana mekanisme attention menghitung relevansi antara

setiap posisi encoder dengan keadaan decoder saat ini. Metode unsqueeze dan operasi broadcasting

memungkinkan kita menghitung semua skor secara paralel, tanpa perulangan eksplisit.

5.5.3. Luong Attention: Penyederhanaan dan Variasinya

Luong et al.[10] mengusulkan beberapa penyederhanaan dan variasi dari mekanisme attention Bah­

danau. Perbedaan utamanya adalah Luong attention menggunakan hidden state saat ini (𝐬𝑡) alih-alih

hidden state sebelumnya (𝐬𝑡−1), dan menawarkan beberapa fungsi skor alternatif:

1. Dot product: 𝑓att(𝐬𝑡,𝐡𝑖) = 𝐬𝖳
𝑡 𝐡𝑖

2. General: 𝑓att(𝐬𝑡,𝐡𝑖) = 𝐬𝖳
𝑡 𝐖𝐡𝑖

LAPISAN LANJUTAN 101

3. Concat: 𝑓att(𝐬𝑡,𝐡𝑖) = 𝐯𝖳 tanh(𝐖[𝐬𝑡; 𝐡𝑖])

class LuongAttention(Module):
 def __init__(self, hidden_size: int, method: str = "dot"):
 super().__init__()
 self.hidden_size = hidden_size
 self.method = method

 if method == "general":
 self.W = Linear(hidden_size, hidden_size, bias=False)
 elif method == "concat":
 self.W = Linear(hidden_size * 2, hidden_size, bias=False)
 self.v = Linear(hidden_size, 1, bias=False)
 elif method != "dot":
 raise ValueError(f"Unknown attention method: {method}")

 def forward(
 self,
 decoder_hidden: Tensor, # (batch, hidden_size)
 encoder_outputs: Tensor # (batch, seq_len, hidden_size)
) -> tuple[Tensor, Tensor]:
 batch_size, seq_len, _ = encoder_outputs.shape

 if self.method == "dot":
 # Simple dot product
 # (batch, hidden_size) @ (batch, hidden_size, seq_len) -> (batch, seq_len)
 scores = (decoder_hidden.unsqueeze(1) @ encoder_outputs.transpose(-2,
-1)).squeeze(1)

 elif self.method == "general":
 # Weighted dot product
 # (batch, hidden_size) -> (batch, 1, hidden_size)
 decoder_hidden_proj = self.W(decoder_hidden).unsqueeze(1)
 # (batch, 1, hidden_size) @ (batch, hidden_size, seq_len) -> (batch,
1, seq_len)
 scores = (decoder_hidden_proj @ encoder_outputs.transpose(-2,
-1)).squeeze(1)

 elif self.method == "concat":
 # Concatenation-based
 # Expand decoder hidden untuk setiap posisi encoder
 decoder_hidden_expanded = decoder_hidden.unsqueeze(1).expand(-1, seq_len,
-1)
 # Concat: (batch, seq_len, hidden_size * 2)
 concat = torch.cat([decoder_hidden_expanded, encoder_outputs], dim=-1)
 # Score: (batch, seq_len)
 scores = self.v(tanh(self.W(concat))).squeeze(-1)

 # Normalisasi dan hitung context
 attention_weights = softmax(scores, dim=1)

102 LAPISAN LANJUTAN

 context = (encoder_outputs * attention_weights.unsqueeze(-1)).sum(dim=1)

 return context, attention_weights

Metode dot product adalah yang paling sederhana dan efisien secara komputasi, namun mensyaratkan

encoder dan decoder memiliki dimensi hidden state yang sama. Metode general menambahkan matriks

bobot yang dapat dipelajari untuk transformasi linier, memberikan fleksibilitas lebih. Metode concat

paling ekspresif namun juga paling mahal dari sisi penggunaan memori dan komputasi.

Catatan

Meskipun Bahdanau dan Luong attention mengatasi masalah hambatan informasi, arsitek­

tur tetap bergantung pada RNN yang harus memproses sekuens secara berurutan. Hal ini

membatasi paralelisasi dan memperlambat training untuk sekuens panjang.

5.5.4. Self-Attention: Fondasi Transformer

Dari penelitian populer bertajuk “Attention is All You Need”, Vaswani et al. [11] memperkenalkan

self-attention. Versi ini adalah varian khusus di mana mekanisme attention dapat “memperhatikan”

semua posisi lain dalam sekuens yang sama. Ini menjadi komponen fundamental arsitektur Trans

former yang akan kita bahas di bagian selanjutnya.

Pada self-attention, kita memproyeksikan masukan yang sama menjadi tiga representasi berbeda:

• Query (𝐐): Apa yang dicari oleh posisi saat ini

• Key (𝐊): Apa yang ditawarkan oleh setiap posisi

• Value (𝐕): Informasi aktual yang akan diagregasi

𝐐 = 𝐗𝐖𝑄

𝐊 = 𝐗𝐖𝐾

𝐕 = 𝐗𝐖𝑉

Attention(𝐐,𝐊,𝐕) = softmax(𝐐𝐊𝖳

√𝑑𝑘
)𝐕

(5.11)

dengan 𝑑𝑘 adalah dimensi key, dan pembagian dengan √𝑑𝑘 untuk menjaga stabilitas numerik saat

dimensi besar.

Perhatikan bahwa pada persamaan di atas, sama sekali tidak ada komponen yang melibatkan

langkah waktu sebelumnya (𝑡 − 1) yang diproses secara berulang. Ini menunjukkan bahwa self-

attention berbeda secara fundamental dari kedua versi attention sebelumnya, karena self-attention

tidak menggunakan arsitektur rekuren sama sekali. Semua embedding dalam sekuens diproses secara

sekaligus.

Tabel 6 menunjukkan beberapa masalah RNN yang dipecahkan oleh self-attention, sekaligus titik

awal RNN mulai ditinggalkan.

RNN Self-Attention

LAPISAN LANJUTAN 103

Paralelisasi Posisi 𝑡 harus menunggu posisi 𝑡 − 1 selesai

diproses

Semua posisi dihitung dalam satu operasi

matriks seperti ditunjukkan pada oleh fungsi

Attention(𝐐,𝐊,𝐕)

Akses jarak jauh Informasi dari posisi ke-1 ke posisi ke-100

harus melewati 99 langkah

Posisi ke-100 dapat langsung “melihat” posisi

1

Alur gradien Gradien dari posisi ke-100 ke posisi ke-1 harus

melewati 99 perkalian matriks

Gradien dapat mengalir langsung melalui

bobot attention

Tabel 6: Permasalahan RNN yang diselesaikan oleh self-attention

Pengembangan lanjutan dari self-attention adalah multi-head attention, yang memungkinkan model

untuk secara serentak memperhatikan informasi dari representasi subruang yang berbeda. Setiap

head dapat belajar untuk menangkap jenis hubungan yang berbeda dalam data. Misalnya, satu head

mungkin fokus pada hubungan sintaksis, sementara head lain menangkap hubungan semantik.

Berikut implementasinya dalam kode Python.

class SelfAttention(Module):
 def __init__(self, embed_dim: int, num_heads: int = 1):
 super().__init__()
 self.embed_dim = embed_dim
 self.num_heads = num_heads
 self.head_dim = embed_dim // num_heads

 assert self.head_dim * num_heads == embed_dim, \
 "embed_dim must be divisible by num_heads"

 # Proyeksi untuk Q, K, V
 self.W_q = Linear(embed_dim, embed_dim)
 self.W_k = Linear(embed_dim, embed_dim)
 self.W_v = Linear(embed_dim, embed_dim)

 # Proyeksi output
 self.W_o = Linear(embed_dim, embed_dim)

 self.scale = self.head_dim ** -0.5

 def forward(self, x: Tensor, mask: Tensor | None = None) -> Tensor:
 batch_size, seq_len, embed_dim = x.shape

 # Hitung Q, K, V
 Q = self.W_q(x) # (batch, seq_len, embed_dim)
 K = self.W_k(x)
 V = self.W_v(x)

 # Reshape untuk multi-head attention
 # (batch, seq_len, num_heads, head_dim) -> (batch, num_heads, seq_len,
head_dim)
 Q = Q.reshape(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1,
2)

104 LAPISAN LANJUTAN

 K = K.reshape(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1,
2)
 V = V.reshape(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1,
2)

 # Hitung attention scores
 # (batch, num_heads, seq_len, head_dim) @ (batch, num_heads, head_dim,
seq_len)
 # -> (batch, num_heads, seq_len, seq_len)
 scores = (Q @ K.transpose(-2, -1)) * self.scale

 # Apply mask jika ada (untuk padding atau causal attention)
 if mask is not None:
 scores = scores.masked_fill(mask == 0, -1e9)

 # Softmax untuk mendapatkan attention weights
 attention_weights = softmax(scores, dim=-1)

 # Apply attention ke values
 # (batch, num_heads, seq_len, seq_len) @ (batch, num_heads, seq_len, head_dim)
 # -> (batch, num_heads, seq_len, head_dim)
 attended = attention_weights @ V

 # Reshape kembali
 # (batch, num_heads, seq_len, head_dim) -> (batch, seq_len, embed_dim)
 attended = attended.transpose(1, 2).reshape(batch_size, seq_len, embed_dim)

 # Final projection
 output = self.W_o(attended)

 return output

Catatan

Konsep query, key, dan value dalam self-attention terinspirasi dari sistem temu balik infor­

masi (information retrieval). Bayangkan sebuah basis data di mana setiap entri memiliki key

(identitas) dan value (konten). Untuk mengakses informasi, kita menggunakan query yang

dicocokkan dengan semua key untuk menemukan value yang relevan. Dalam konteks atten

tion, “pencocokan” dilakukan melalui dot product dan “relevansi” dihitung melalui softmax.

Pendalaman

Kompleksitas komputasi self-attention adalah 𝑂(𝑛2𝑑) dengan 𝑛 adalah panjang sekuens dan

𝑑 adalah dimensi model. Ini menjadi bottleneck untuk sekuens yang sangat panjang. Berbagai

varian efisien telah diusulkan, seperti Linformer [12] yang mengurangi kompleksitas menjadi

𝑂(𝑛𝑑) dengan memproyeksikan matriks attention ke dimensi yang lebih rendah, atau

LAPISAN LANJUTAN 105

Reformer [13] yang menggunakan locality-sensitive hashing untuk mengurangi kompleksitas

menjadi 𝑂(𝑛 log 𝑛).

5.5.4.1. Multi-Head Attention

5.5.5. Masked Attention dan Causal Attention

Dalam beberapa aplikasi, kita perlu membatasi posisi mana yang dapat “diperhatikan” oleh posisi

tertentu. Dua jenis pembatasan yang umum adalah:

1. Padding mask: Mengabaikan posisi padding dalam sekuens yang panjangnya bervariasi

2. Causal mask: Mencegah posisi untuk melihat posisi “masa depan” (untuk model autoregresif)

Padding mask diperlukan karena kita sering memproses sekuens dalam batch dengan panjang yang

berbeda. Sekuens yang lebih pendek diisi dengan token padding, dan kita tidak ingin model memper­

hatikan posisi-posisi ini.

Causal mask penting untuk model generatif seperti GPT, di mana prediksi token ke-𝑖 hanya

boleh bergantung pada token 1 hingga 𝑖 − 1. Ini memastikan model dapat digunakan untuk generasi

autoregresif tanpa information leakage.

Implementasi masking dilakukan dengan menambahkan nilai negatif yang sangat besar (misalnya

−109) pada skor attention untuk posisi yang di-mask. Setelah softmax, posisi-posisi ini akan memiliki

bobot mendekati nol.

5.5.6. Visualisasi dan Interpretasi Attention

Salah satu keunggulan mekanisme attention adalah interpretabilitasnya. Bobot attention dapat

divisualisasikan sebagai heatmap yang menunjukkan posisi mana yang “diperhatikan” model saat

memproses posisi tertentu. Ini memberikan wawasan tentang apa yang dipelajari model dan dapat

membantu dalam debugging atau analisis kesalahan.

Dalam tugas penerjemahan, visualisasi attention sering menunjukkan pola diagonal yang menan­

dakan korespondensi kata-per-kata, dengan deviasi menarik untuk konstruksi gramatikal yang

berbeda antar bahasa. Untuk tugas question answering, attention weights dapat mengungkapkan

bagian mana dari konteks yang dianggap relevan untuk menjawab pertanyaan.

Catatan

Meskipun visualisasi attention memberikan intuisi yang berguna, interpretasi harus

dilakukan dengan hati-hati. Penelitian terbaru menunjukkan bahwa bobot attention tidak

selalu berkorelasi langsung dengan kepentingan fitur, dan model mungkin menggunakan

mekanisme lain bersamaan dengan attention untuk membuat keputusan.

106 LAPISAN LANJUTAN

Bab 6. Transformer

6.1. Komponen Penyusun

6.1.1. Positional Encoding

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut

labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore

dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum

nobis opinemur. Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique

possit, augeri amplificarique non possit. At etiam Athenis, ut e patre audiebam facete et urbane

Stoicos irridente, statua est in quo a nobis philosophia defensa et collaudata est, cum id, quod maxime

placeat, facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Temporibus autem

quibusdam et.

class PositionalEncoding(Module):
 def __init__(self, d_model: int, max_len: int = 5000):
 super().__init__()

 pe = np.zeros((max_len, d_model))
 pos = np.arange(max_len)[:, np.newaxis] # (max_len, 1)

 div_term = np.exp(
 np.arange(0, d_model, 2) * (-np.log(10000.0) / d_model)
) # (d_model/2,)

 pe[:, 0::2] = np.sin(pos * div_term) # even indices
 pe[:, 1::2] = np.cos(pos * div_term) # odd indices

 self.pe = pe # NumPy array, will not registered as parameter

 def forward(self, x: Tensor) -> Tensor:
 # x: (batch, seq_len, d_model)
 seq_len = x.shape[1]
 return x + Tensor(self.pe[:seq_len])

6.1.2. Multi-head Attention

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut

labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore

dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum

nobis opinemur. Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique

possit, augeri amplificarique non possit. At etiam Athenis, ut e patre audiebam facete et urbane

Stoicos irridente, statua est in quo a nobis philosophia defensa et collaudata est, cum id, quod maxime

107

placeat, facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Temporibus autem

quibusdam et.

6.1.3. Feed-Forward Network

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut

labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore

dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum

nobis opinemur. Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique

possit, augeri amplificarique non possit. At etiam Athenis, ut e patre audiebam facete et urbane

Stoicos irridente, statua est in quo a nobis philosophia defensa et collaudata est, cum id, quod maxime

placeat, facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Temporibus autem

quibusdam et.

6.1.4. Residual Connection

6.2. Blok Transformer

6.2.1. Blok Transformer Sebagai Modul

class TransformerBlock(Module):
 def __init__(self, d_model: int, num_heads: int, d_ff: int, dropout: float = 0.0):
 super().__init__()

 self.attention = SelfAttention(d_model, num_heads)
 self.norm1 = LayerNorm(d_model)
 self.norm2 = LayerNorm(d_model)

 self.ffn = Sequential(
 Linear(d_model, d_ff),
 ReLU(),
 Linear(d_ff, d_model),
)

 def forward(self, x: Tensor, mask: Tensor | None = None) -> Tensor:
 # Self-attention + residual + norm
 attn_out = self.attention(x, mask)
 x = self.norm1(x + attn_out)

 # FFN + residual + norm
 ffn_out = self.ffn(x)
 x = self.norm2(x + ffn_out)

 return x

6.2.2. Transformer Encoder

class TransformerEncoder(Module):
 def __init__(
 self,
 num_layers: int,

108 TR ANSFORMER

 d_model: int,
 num_heads: int,
 d_ff: int,
 vocab_size: int,
 max_len: int = 512,
):
 super().__init__()

 self.embedding = Embedding(vocab_size, d_model)
 self.pos_encoding = PositionalEncoding(d_model, max_len)

 self.blocks = []
 for i in range(num_layers):
 block = TransformerBlock(d_model, num_heads, d_ff)
 setattr(self, f"block_{i}", block)
 self.blocks.append(block)

 def forward(self, x: Tensor, mask: Tensor | None = None) -> Tensor:
 x = self.embedding(x)
 x = self.pos_encoding(x)

 for block in self.blocks:
 x = block(x, mask)

 return x

6.2.3. Penggunaan Transformer Encoder untuk Klasifikasi

class TransformerClassifier(Module):
 def __init__(
 self,
 num_layers: int,
 d_model: int,
 num_heads: int,
 d_ff: int,
 vocab_size: int,
 num_classes: int,
 max_len: int = 512,
):
 super().__init__()

 self.encoder = TransformerEncoder(
 num_layers, d_model, num_heads, d_ff, vocab_size, max_len
)
 self.classifier = Linear(d_model, num_classes)

 def forward(self, x: Tensor, mask: Tensor | None = None) -> Tensor:
 encoded = self.encoder(x, mask) # (batch, seq_len, d_model)
 pooled = encoded[:, 0, :] # CLS token (first position)
 return self.classifier(pooled)

TR ANSFORMER 109

6.3.

110 TR ANSFORMER

Daftar Pustaka

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification,” in Proceedings of the IEEE international conference on

computer vision, 2015, pp. 1026–1034.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional

transformers for language understanding,” in Proceedings of the 2019 conference of the North

American chapter of the association for computational linguistics: human language technologies,

volume 1 (long and short papers), 2019, pp. 4171–4186.

[3] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, and others, “Improving language under­

standing by generative pre-training,” 2018.

[4] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural

networks,” in Proceedings of the thirteenth international conference on artificial intelligence and

statistics, 2010, pp. 249–256.

[5] S. K. Kumar, “On weight initialization in deep neural networks,” arXiv preprint

arXiv:1704.08863, 2017.

[6] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[7] K. Cho et al., “Learning phrase representations using RNN encoder-decoder for statistical

machine translation,” arXiv preprint arXiv:1406.1078, 2014.

[8] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural

networks on sequence modeling,” arXiv preprint arXiv:1412.3555, 2014.

[9] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align

and translate,” arXiv preprint arXiv:1409.0473, 2014.

[10] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based neural

machine translation,” arXiv preprint arXiv:1508.04025, 2015.

[11] A. Vaswani et al., “Attention is all you need,” Advances in neural information processing systems,

vol. 30, 2017.

[12] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma, “Linformer: Self-attention with linear

complexity,” arXiv preprint arXiv:2006.04768, 2020.

[13] N. Kitaev, Ł. Kaiser, and A. Levskaya, “Reformer: The efficient transformer,” arXiv preprint

arXiv:2001.04451, 2020.

111

Daftar Gambar

Gambar 1 Operasi aritmetika 𝑦 = (𝑎 + 𝑏) × 𝑐 sebagai representasi graf . ⁠23

Gambar 2 Representasi simpul penjumlahan . ⁠26

Gambar 3 Representasi graf penjumlahan tiga variabel 𝑦 = 𝑎 + 𝑏 + 𝑐 . ⁠28

Gambar 4 Representasi graf penggunaan variabel berulang 𝑦 = 𝑎 + 𝑎 + 𝑎 ⁠29

Gambar 5 Ilustrasi perkalian dua larik berbeda bentuk dengan mekanisme broadcasting. Larik b

akan digandakan hingga memiliki bentuk kompatibel dengan a ⁠33

Gambar 6 Larik b akan digandakan sepanjang dimensi baris hingga memiliki bentuk kompatibel

dengan a . ⁠34

Gambar 7 Representasi graf perkalian matriks 𝐂 = 𝐀𝐁 yang diikuti dengan suatu fungsi

sebarang dengan luaran skalar 𝑦 (yang diperoleh dari, misalnya, dari operasi

penjumlahan total atau rataan) . ⁠51

Gambar 8 Perbandingan nilai aktual (biru) dan prediksi (merah) pada dataset California Housing.

Model regresi linier berhasil menangkap tren umum meskipun tidak sempurna untuk

data yang kompleks. ⁠60

Gambar 9 Contoh penggunaan gaussian filter untuk menghasilkan citra buram ⁠77

Gambar 10 Ilustrasi operasi max pooling 2×2 dengan stride 2 pada peta fitur ⁠85

Daftar Tabel

Tabel 1 Perkiraan waktu yang dibutuhkan untuk menghitung seluruh gradien ⁠12

Tabel 2 Pemaknaan tensor di tiga bidang yang berbeda . ⁠16

Tabel 3 Contoh tensor dengan berbagai ranking . ⁠17

Tabel 4 Perilaku operator @ untuk berbagai dimensi tensor . ⁠52

Tabel 5 . ⁠77

Tabel 6 Permasalahan RNN yang diselesaikan oleh self-attention . ⁠103

112

	Pendahuluan
	1. Optimasi pada Deep Learning dan Permasalahannya
	1.1. Permasalahan Proses Pembelajaran Mesin
	1.2. Kutukan Dimensionalitas (The Curse of Dimensionality)
	1.3. Solusi Naif: Diferensiasi Numerik
	1.3.1. Ledakan Komputasi
	1.3.2. Batasan Presisi Numerik

	1.4. Secuplik Solusi

	2. Implementasi Tensor dan Penghitungan Turunan Otomatis (Autodiff)
	2.1. Terminologi Tensor dalam Konteks Deep Learning
	2.2. Pemanfaatan NumPy Sebagai Landasan Utama Tensor
	2.3. Kelas Tensor
	2.3.1. Anatomi Kelas Tensor
	2.3.1.1. Atribut Utama
	2.3.1.2. Mekanisme Pelacakan Gradien
	2.3.1.3. Metode dan Fungsi Bantuan

	2.4. Sistem Penghitungan Turunan Otomatis
	2.5. Operasi Aritmetika Sebagai Proses Konstruksi Graf
	2.6. Laluan Mundur
	2.7. Implementasi Operasi Pertama: Penjumlahan
	2.8. Fitur penunjang kenyamanan

	3. Operasi Tensor
	3.1. Menangani Broadcasting untuk Operasi Biner Per Elemen (Element-Wise Binary Operation)
	3.1.1. Kelemahan Implementasi Kita
	3.1.2. Membalik Efek Broadcasting dengan "Unbroadcasting"

	3.2. Pemutakhiran Fungsi Penjumlahan
	3.3. Implementasi Beberapa Operasi Biner Per Elemen Lainnya
	3.3.1. Pengurangan
	3.3.2. Perkalian
	3.3.3. Pembagian

	3.4. Implementasi Beberapa Operasi Uner (Unary Operation) Biasa
	3.4.1. Negasi
	3.4.2. Eksponensial
	3.4.3. Akar Kuadrat
	3.4.4. Logaritma Natural

	3.5. Implementasi Beberapa Operasi Reduksi
	3.5.1. Penjumlahan Total (Summation)
	3.5.2. Rataan (Mean)
	3.5.3. Maksimum (Max) dan Minimum (Min)

	3.6. Implementasi Beberapa Fungsi Aktivasi
	3.6.1. ReLU
	3.6.2. Sigmoid
	3.6.3. Tanh

	3.7. Softmax
	3.8. Implementasi Operasi Perkalian Matriks
	3.8.1. Kasus Khusus: Batch Matrix Multiplication

	3.9. Indexing dan Slicing
	3.10. Penggabungan dan Pemecahan Tensor
	3.10.1. Stack
	3.10.2. Split

	3.11. Manipulasi Bentuk
	3.11.1. Transposisi
	3.11.2. Reshape

	3.12. Pemanasan: Regresi Linier
	3.12.1. Dataset
	3.12.2. Gradient Descent
	3.12.3. Kode Selengkapnya

	4. Antarmuka Pemrograman Aplikasi (API) Deep learning
	4.1. Kelas Module
	4.1.1. Anatomi Modul
	4.1.2. Forward Pass Abstrak
	4.1.3. Mode Training dan Evaluasi
	4.1.4. Iterasi Parameter
	4.1.5. Metode Magic untuk Ergonomi
	4.1.6. Implementasi Lengkap

	4.2. Beberapa Jenis Lapisan (Layer) Dasar
	4.2.1. Lapisan Linier
	4.2.2. Fungsi Aktivasi Sebagai Modul
	4.2.3. Lapisan Drop-Out
	4.2.4. Lapisan Embedding

	4.3. Lapisan Sekuensial
	4.4. Fungsi Loss (Loss Function)
	4.4.1. MSE
	4.4.2. Cross-Entropy

	4.5. Pengoptimal (Optimizer)
	4.5.1. Kelas Basis
	4.5.2. Stochastic Gradient descent (SGD)
	4.5.3. RMSprop
	4.5.4. Adam
	4.5.5. AdamW

	4.6. Multi-Layer Perceptron (MLP) dengan API baru
	4.6.1. Pewarisan kelas Module
	4.6.2. API Lapisan Sekuensial

	5. Lapisan Lanjutan
	5.1. Lapisan Konvolusional Dua Dimensi
	5.1.1. Intuisi dan Motivasi
	5.1.2. Konvolusi Sebagai Perkalian Matriks
	5.1.3. Im2Col
	5.1.4. Col2Im
	5.1.5. Fungsi Konvolusi
	5.1.6. Modul Conv2d

	5.2. Lapisan Pooling
	5.2.1. Max Pooling dengan Im2Col
	5.2.2. Fungsi Laluan Mundur untuk Max Pooling
	5.2.3. Modul MaxPool2d
	5.2.4. Jenis Pooling Lainnya

	5.3. Lapisan Normalisasi
	5.3.1. Normalisasi Batch
	5.3.2. Normalisasi Lapisan

	5.4. Lapisan Rekuren
	5.4.1. Neural Network Rekuren (Recurrent Neural Network) "Vanila"
	5.4.2. Long Short Term Memory (LSTM)
	5.4.3. Gated Recurrent Unit (GRU)

	5.5. Lapisan Attention
	5.5.1. Motivasi dan Intuisi
	5.5.2. Attention Dasar: Bahdanau Attention
	5.5.3. Luong Attention: Penyederhanaan dan Variasinya
	5.5.4. Self-Attention: Fondasi Transformer
	5.5.4.1. Multi-Head Attention

	5.5.5. Masked Attention dan Causal Attention
	5.5.6. Visualisasi dan Interpretasi Attention

	6. Transformer
	6.1. Komponen Penyusun
	6.1.1. Positional Encoding
	6.1.2. Multi-head Attention
	6.1.3. Feed-Forward Network
	6.1.4. Residual Connection

	6.2. Blok Transformer
	6.2.1. Blok Transformer Sebagai Modul
	6.2.2. Transformer Encoder
	6.2.3. Penggunaan Transformer Encoder untuk Klasifikasi

	6.3.

	Daftar Pustaka
	Daftar Gambar
	Daftar Tabel

