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Pendahuluan

Implementasi Dari Dasar

e TODO
Makna “dari dasar”

* Bedanya dibanding buku lain dengan klaim “dari dasar’

>

* Bahasa pengantar: Py
* Pake NumPy
* APl referensi: pytorch

Sasaran Pembaca Buku ini
Untuk Siapa Buku ini Ditujukan

Buku ini ditujukan untuk praktisi rekayasa perangkat lunak yang bekerja dengan sistem machine

learning dan mahasiswa ilmu komputer (atau serumpun) akhir tahun atau tingkat lanjut yang

* Terbiasa menulis program di bahasa pemrograman Python (atau bahasa pemrograman serbaguna
lainnya)

* Terbiasa membaca dan menulis kode tak trivial

* Memiliki dasar kalkulus dan aljabar linier

Pembaca tidak harus menguasai materi deep learning, namun baiknya termotivasi untuk memahami
mekanismenya di balik layar. Penulis juga menyasar pembaca yang mungkin penasaran mengapa
pustaka seperti PyTorch didesain sebagaimana adanya dan melakukan sesuatu dengan cara tertentu.
Mungkin Anda bosan menerima sistem autodift apa adanya sebagai ilmu sihir atau kotak hitam, atau
mungkin Anda sedang membangun sistem machine learning dan ingin memahami implikasi suatu
implementasi terhadap performa.

Untuk Siapa Buku ini (Mungkin) Tidak Ditujukan

Buku ini bersifat semi-praktis namun tingkat lanjutan. Buku ini tidak akan mengajarkan materi
fundamental machine learning maupun deep learning, tidak pula mencoba meyakinkan pembaca
bahwa neural network adalah teknologi yang ajaib dan berguna bagi peradaban.

Jika pembaca mencari materi yang bersifat pengenalan pada machine learning, silakan memu-
lainya dengan sumber bacaan atau literatur yang lain. Pembaca yang hanya ingin cukup menggunakan
kerangka kerja machine learning tanpa ada keperluan memahami implementasi internalnya mungkin
tidak terlalu membutuhkan buku ini. Jika pembaca tidak terlalu nyaman dengan contoh kode dengan
kompleksitas menengah, mungkin buku ini juga tidak terlalu cocok bagi Anda.



Notasi
Ragam Blok Penyerta Teks

Blok catatan

Pendalaman

Blok pendalaman

Contoh: Judul blok Contoh
Blok contoh

Peringatan

Blok Peringatan

Potongan kode

Potongan kode ditampung dalam blok dengan teks yang disorot. Kadang potongan kode disertai
contoh luaran yang bersesuaian dalam blok abu-abu dengan label “Luaran”.

-

print("Halo dunia")

for i in ["satu", "dua", "tiga"]:
print(i)

N

Luaran

Halo dunia
satu
dua
tiga

C

Notasi Matematika

e Skalarx,y,a,b,z.. € X

ij
* Vektorx,y,a,b
* Matriks X, Y, A, B

* Himpunan X', Y, A, B



Bab 1. Optimasi pada Deep Learning
dan Permasalahannya

Tiap inovasi di bidang kecerdasan buatan, mulai dari pengenalan wajah, deteksi objek, hingga
penerjemahan bahasa, semua berujung pada penyelesaian masalah fundamental, yaitu optimasi.
Ketika neural network belajar membedakan citra kucing dan anjing, menghasilkan teks manusiawi,
atau memprediksi harga saham, ia akan aktif melakukan pencarian di suatu ruang parameter demi
meminimalkan galat prediksi. Pencarian kombinasi dari jutaan hingga triliunan parameter ini adalah
soalan utama di dunia kecerdasan buatan modern.

Mekanisme deep learning masih buram bagi banyak praktisi. Kita mudah saja menggunakan
pustaka, memanggil loss.backward() dan optimizer.step() & /a PyTorch, kemudian berharap secara
ajaib performa model yang kita latih akan meningkat. Namun, apa yang sebenarnya terjadi saat
pemanggilan fungsi-fungsi tersebut? Bagaimana komputer secara efektif menjelajah parameter dalam
dimensi tinggi? Bab ini akan menjadi pengantar untuk mengulasnya.

1.1. Permasalahan Proses Pembelajaran Mesin

Pada intinya, deep learning ada persoalan mencari suatu fungsi yang memetakan masukan ke luaran
tanpa harus secara eksplisit mengimplementasikan fungsi itu secara manual. Jika diberi citra digit ter-
tulis tangan, prediksi angkanya. Jika diberi teks Bahasa Inggris, beri terjemahan Bahasa Indonesianya.
Kita tidak pula perlu secara manual melakukan rekayasa fitur pada data masukan karena model akan

mempelajarinya sendiri.

“Namun, apa sebetulnya makna dari ‘mempelajari suatu fungsi’?”

Pada konteks neural network, “mempelajari fungsi” ini adalah soal mencari parameter model yang

tepat sehingga model dapat melakukan prediksi yang juga tepat.

Perhatikan pengklasifikasi citra digit berikut ini.

import torch
import torch.nn as nn
import numpy as np

class SimpleNet(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(784, 128)
self.fc2 = nn.Linear(128, 64)

self.fe3 = nn.Linear(64, 10)

def forward(self, x):



x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
return self.fc3(x)

model = SimpleNet()
total_params = sum(p.numel() for p in model.parameters())
print(f"Total parameters: {total_params:,}")

Arsitektur yang nampak sederhana ini memiliki 109,386 parameter yang perlu dipelajari (learnable
parameter). Melatih model ini berarti mencari konfigurasi parameter optimal. Pertanyaannya, opti-

mal terhadap apa?

Dalam dunia neural network, kita bisa mengukur “seberapa buruk” prediksi model kita saat
dilatih dengan melihat seberapa menyimpang prediksi model dari jawaban sebenarnya. Fungsi untuk
mengukurnya kita sebut fungsi /oss. Untuk tugas klasifikasi seperti MNIST, kita biasanya menggu-

nakan ukuran cross-entropy loss:

def cross_entropy_loss(predictions, targets):

exp_preds = np.exp(predictions - np.max(predictions, axis=1, keepdims=True))
probs = exp_preds / np.sum(exp_preds, axis=1, keepdims=True)

batch_size = predictions.shape[0]
true_class_probs = probs[range(batch_size), targets]

return -np.mean(np.log(true_class_probs + 1e-8))

Melatih neural network berarti mencari nilai parameter yang meminimalkan suatu fungsi Joss. Jika
6 merepresentasikan suatu parameter pada model, kita perlu mencari nilai optimalnya, 6%, dengan

menyelesaikan

0* = argmin £(0) (1.1)
0

Jadi, bisa kita pahami bahwa pencarian parameter optimal yang kita bicarakan adalah optimal
terhadap fungsi Joss. Inilah inti dari optimasi, penggerak utama deep learning.

Mulai dari sini, semua akan semakin menantang, menarik, dan... rumit.

1.2. Kutukan Dimensionalitas (The Curse of Dimensionality)

Untuk lebih memahami situasi permasalahannya, mari kita visualisasikan apa yang sebenarnya sedang
kita hadapi. Untuk masalah optimasi klasik, kita bisa meminimalkan suatu fungsi dari satu hingga
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dua variabel. Kita bisa gambarkan fungsinya di atas selembar kertas, amatilanskapnya, dan identifikasi
puncak dan lembahnya. Namun, pengklasifikasi MNIST kita memiliki 109,386 parameter (109,386
dimensi parameter yang perlu dioptimalkan). Jelas kita tidak bisa menyelesaikan ini dengan brute force.

Kita membutuhkan pendekatan yang lebih efektif dan efisien.

Untungnya, dengan sedikit kalkulus, kita tidak perlu mencari di setiap sudut ruang parameter
secara acak. Kita dapat mencari gradien suatu fungsi untuk mengarahkan pencarian. Gradien akan
menunjukkan arah menuju ketinggian paling curam pada kurva Joss, dan kita bisa mengambil arah

sebaliknya untuk menuju nilai Joss yang lebih kecil.
Hal ini yang menjadi cikal-bakal aturan pembaruan parameter pada gradient descent:

ouo)

0:=0—« 20

(1.2)

di mana o adalah learning rate. Jangan lupa, 6 adalah satu nilai skalar. Untuk model MNIST,
bagaimana menangani turunan 109,386 parameter 6, di mana ada banyak fungsi rumit yang terlibat
dalam prediksi dan penghitungan Joss?

1.3. Solusi Naif: Diferensiasi Numerik

Saat dihadapkan dengan masalah komputasi turunan, insting pertama beberapa dari kita mungkin
mengimplementasikan turunan sebarang fungsi berdasarkan definisi standar,

£/ () = lim |

f@+h)— fz)]
h—0 h (1'3)
Untuk komputasi yang lebih praktis, kita gunakan hampiran sebagai berikut.
1(0. {(0+h-e)—1(0—h-e;
8 ( 'L) ~ ( + el) ( e'L) (1.4)

00, 2h ’

7

di mana e; adalah vektor satuan untuk arah ke-i. Mari kita implementasikan untuk masalah sederhana
untuk memahami mekanismenya. Untuk contoh ini, kita mencoba mencari berapa nilai w dan b yang
memenuhi persamaan f(x) = 2z + 1. Untuk mensimulasikan derau, kita tambahkan suku 0.1¢

pada fungsi, di manae ~ N (0, 1).

import numpy as np
import time

np.random.seed(42)

n_samples = 1600

x = np.linspace(@, 10, n_samples)

y_true =2 * x + 1 + 8.1 * np.random.randn(n_samples)

def mse_loss(params, x, y):

w, b = params

y_pred =w * x + b
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return np.mean((y - y_pred) ** 2)

def numerical_gradient(f, params, h=1e-5):
"""Compute gradient using finite differences
grad = np.zeros_like(params)

for i in range(len(params)):
# Create perturbation vectors
params_plus = params.copy()
params_minus = params.copy()

params_plus[i] += h
params_minus[i] -= h

# Finite difference approximation

grad[i] = (f(params_plus, x, y_true) - f(params_minus, x, y_true)) / (2 * h)

return grad

# Training with numerical gradients
params = np.array([6.0, 6.8]) # Initialize w=08, h=0
learning_rate = 0.01

print("Training with numerical differentiation:")
print(f"{'Epoch':<6} {'Loss':<10} {'w':<10} {'b':<10} {'Time':<16}")
print("-" * 46)

for epoch in range(1000):
start_time = time.time()

mse_loss(params, x, y_true)
numerical_gradient(mse_loss, paranms)
* grad

loss
grad
params -= learning_rate

elapsed = (time.time() - start_time) * 10600
if epoch % 1600 = 0:
print(
f"{epoch:<6} {loss:<10.4f} {params[0]:<10.3f} {params[1]:<16.3f}
{elapsed:<106.2f}"
)

OPTIMASI PADA DEEP LEARNING DAN PERMASALAHANNYA
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Training with numerical differentiation:

Epoch Loss w b Time
0 154.8335  1.439 8.220 8.89
100 8.08499 2.0862 8.579 8.83
200 8.8236 2.0838 8.738 8.82
308 8.8138 2.824 8.834 8.87
408 8.08103 2.015 8.892 8.082
500 0.06089 2.010 8.928 8.83
608 0.0084 2.006 8.949 8.82
708 0.06083 2.004 8.962 8.82
800 0.0082 2.003 8.970 8.082
908 0.0082 2.003 8.975 8.082

Nampaknya berhasil, parameter yang dicari menghampiri nilai sebenarnya: w = 2dan b = 1. Untuk
contoh main-main seperti ini, diferensiasi numerik mungkin saja bekerja. Mengapa kita tidak meng-
gunakan ini saja untuk neural network, khususnya deep learning?

1.3.1. Ledakan Komputasi

Kekurangan terbesar dari diferensiasi numerik akan nampak jelas saat skala permasalahannya mulai
realistis. Tiap komputasi gradien untuk masing-masing skalar paling tidak membutuhkan dua kali
laluan maju pada keseluruhan model: satu untuk perturbasi positif, satu untuk negatif.

Untuk SimpleNet kita dengan jumlah parameter 109,386 akan ada 218,772 laluan maju.
Asumsikan, dengan optimis, satu laluan maju (eksekusi f(x)) 1 ms. Waktu yang dibutuhkan
untuk menghitung seluruh gradien adalah 219 detik, atau sekitar 3.65 menit, untuk satu mini-
batch. Itu untuk satu iterasi latih saja, dan untuk model yang kecil untuk standar modern. Sebagai
perbandingan, ResNet-50 [1] memiliki 25,600,000 parameter, BERT-Base [2] memiliki 110,000,000,
dan GPT-3 [3] memiliki 175,000,000,000. Pada Tabel 1, kita bisa melihat perkiraan waktu yang
dibutuhkan untuk menghitung gradien seluruh parameter model dengan asumsi satu mini-barch
berukuran 32 sampel.

Model Dataset Jumlah Sampel Data Latih =~ Waktu Total Per Epoch
SimpleNet MNIST 60,000 113.9 Jam
ResNet-50 ImageNet 1,281,167 65 Tahun
BERT-Base BookCorpus 3,300,000 719.4 Tahun

GPT-3 Common Crawl 300,000,000,000 104,047,754,946 Tahun

Tabel 1: Perkiraan waktu yang dibutuhkan untuk menghitung seluruh gradien

1.3.2. Batasan Presisi Numerik

Katakanlah kita diizinkan berfantasi memiliki sumber daya komputasi tak hingga. Diferensiasi
numerik akan tetap menghadapi batasan lain, yaitu presisi numerik yang terbatas. Simak dan jalankan

kode berikut.
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import numpy as np

def f(x):
return (x + 1e-18)**20 - (x - 1e-10)**20

def numerical_gradient(x, h):
return (f(x + h) - f(x = h)) / (2 * h)

x =1.8

print(f"Function: (x + 1e-18)720 - (x - 1e-18)"20")
print(f"Evaluation point: x = {x}")

print(f"True derivative: {40 * x**19 * 1e-10}")
print(f"\nNumerical gradients:")

print(f"{'h':<15} {'Gradient':<28} {'Error vs True':<203}")
print("-" * 68)

true_grad = 408 * x**19 * 1e-10

for h in [1e-3, 1e-4, 1e-5, 1e-6, le-7, 1e-8, 1e-18, 1e-12]:
grad = numerical_gradient(x, h)
error = abs(grad - true_grad)
print(f"{h:<15.0e} {grad:<20.2e} {error:<20.2e}")

Luaran

Function: (x + 1e-18)"20 - (x - 1e-18)"28
Evaluation point: x = 1.0
True derivative: 4e-89

Numerical gradients:

h Gradient Error vs True
1e-03 7.60e-08 7.20e-08
le-04 7.60e-08 7.20e-08
1e-05 7.60e-08 7.20e-08
1e-06 7.60e-08 7.20e-08
1e-07 7.61e-08 7.21e-08
1e-08 7.22e-08 6.82e-08
1e-18 0.00e+00 4.00e-09
Te-12 1.11e-83 1.11e-03
1e-13 1.11e-02 1.11e-02
le-14 0.00e+00 4.00e-09
1.11e+00 1.11e+00

Te-15

Dari hasil di atas, kita melihat bahwa untuk fungsi sederhana ini, diferensiasi numerik mulai tidak
stabil ketika h terlalu kecil. Ini terjadi karena “catastrophic cancellation”, yaitu saat kita mengurangi
dua bilangan yang hampir identik, sehingga kehilangan semua digit signifikan. Hal ini terjadi dalam
persamaan turunan numerik ketika h terlalu kecil, sehingga f(z + h) dan f(z — h) menjadi hampir
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identik dan pengurangannya kehilangan digit signifikan. Hasilnya, pembilang yang seharusnya kecil
malah didominasi oleh derau presisi floating-point dan membuat hampiran turunan menjadi tidak

akurat.

Masalah ini jauh lebih parah pada model yang memiliki jutaan parameter dengan skala yang
sangat bervariasi. Tidak ada nilai h tunggal yang optimal untuk semua parameter. Sementara sebagian
parameter berada di “sweet spot”, yang lain akan mengalami catastrophic cancellation seperti contoh di
atas. Ditambah dengan waktu komputasi yang lama, diferensiasi numerik menjadi tidak praktis dan

tidak dapat diandalkan untuk deep learning.
1.4. Secuplik Solusi

Alih-alih memperlakukan jaringan saraf sebagai fungsi black box dan mengujinya dengan perturbasi,
bagaimana jika kita bisa mengintip ke dalam dan melihat persis bagaimana output bergantung pada
setiap parameter?

Setiap komputasi neural network hanyalah sederet operasi elementer:

output = model(input)
loss = criterion(output, target)

h1 = input @ W1 + b1
h2 = torch.relu(h1)
h3 = h2 @ W2 + b2

h4 = torch.relu(h3)

output = h4 @ W3 + b3
loss = cross_entropy(output, target)

Setiap operasi ini memiliki bentuk matematis yang terdefinisi dengan baik, dan yang lebih penting,
turunan yang terdefinisi dengan baik. Aturan rantai dari kalkulus memberi tahu kita bagaimana
menggabungkan turunan-turunan ini. Ide utamanya adalah, alih-alih memperlakukan jaringan saraf
sebagai black box dan mengujinya dengan perturbasi, kita dapat melacak setiap operasi saat terjadi.

Lihat contoh berikut.
a=2.0
b=23.0
c=a*h
d=c+a

Saat kita menghitung maju, kita secara implisit membangun graf dependensi. Nilai d bergantung
pada ¢ dan a,sedangkan ¢ bergantung pada a dan b . Jika kita melacak dependensi ini, kita dapat
kemudian menelusurinya mundur untuk menghitung gradien secara efisien menggunakan aturan

rantai.

Iniadalah esensiautomatic differentiation, yang selanjutnya kita sebut autodiff: membangun
graf komputasi selama laluan maju, kemudian menelusurinya mundur untuk menghitung semua
gradien dalam satu sapuan. Tidak ada perturbasi, tidak ada aproksimasi, semua dilakukan dengan
turunan eksak yang dihitung secara efisien. Di bab berikutnya, kita akan membangun sistem ini dari
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awal, dimulai dengan tensor yang dapat melacak riwayat komputasinya sendiri. Anda akan melihat
persis bagaimana ide elegan ini mengubah komputasi gradien dari masalah yang tidak praktis menjadi

algoritma yang efisien.

OPTIMASI PADA DEEP LEARNING DAN PERMASALAHANNYA 15



Bab 2. Implementasi Tensor dan
Penghitungan Turunan Otomatis
(Autodiff)

“Tensor” menjadi dasar representasi data untuk suatu sistem deep learning. Kita akan membangun

fitur-fitur secara bertahap, mulai dari struktur data dasar hingga sistem propagasi balik otomatis dasar.

2.1. Terminologi Tensor dalam Konteks Deep Learning

Sederhananya, tensor adalah larik berdimensi n (atau n-dimensional array), di mana seluruh elemen-
nya memiliki tipe data dasar yang sama. Artinya, larik ini bisa berdimensi sembarang, tidak terbatas
pada dimensi 1, 2, dan 3 saja. Pustaka deep learning populer yang mengadopsi konsep tensor antara
lain, PyTorch, Tensorflow?, dan burn’.

Bagi pembaca dengan latar belakang fisika dan matematika murni: Anda boleh melupakan dulu
definisi tensor yang Anda kenal. Di dunia deep learning, tensor memiliki makna yang jauh lebih
sederhana. Kata “tensor” dipakai di tiga domain berbeda dengan makna yang sangat berbeda:

Domain Definisi Tensor Contoh
Matematika Murni =~ Objek multilinear yang memetakan vektor ke skalar Tensor metrik Riemann
Fisika Besaran yang bertransformasi dengan cara tertentu = Tensor stress/strain

saat koordinat berubah
Deep Learning larik multidimensi array torch.tensor([[[1,2],[3,4]11]1)

Tabel 2: Pemaknaan tensor di tiga bidang yang berbeda

Istilah tensor adalah upaya penamaan generalisasi cara untuk menata nilai-nilai dalam suatu ruang.
Jika kumpulan skalar dalam ruang berdimensi satu disebut vektor dan ruang berdimensi dua disebut
matriks, bagaimana dengan dimensi tiga dan lebih tinggi? Dari sinilah beragam penelitian dan pustaka
menggunakan istilah “Tensor”, terlebih sejak dipopulerkan penggunaannya oleh Theano dan Tensor-
flow. Di buku ini, tensor mengacu pada sistem larik multidimensi. Tidak ada transformasi koordinat,

tidak ada kovarian/kontravarian, tidak ada basis vektor. Hanya ada larik multidimensi.

Pembaca mungkin sudah familiar dengan larik multidimensi milik NumPy ( NDArray ), pustaka
numerik populer untuk Python. Sekilas, sifat tensor mirip dengan larik NumPy. Lantas, apa bedanya?
Sejatinya, nyaris tidak ada bedanya. Pembeda utamanya adalah, biasanya, tensor diimplementasikan
agar mampu melacak riwayat komputasi (sebagai struktur graf) dan gradien. Pustaka yang lebih
mutakhir juga mendesain tensor yang bisa beroperasi di mesin dengan graphical processing unit (GPU)

untuk pemrosesan yang jauh lebih cepat.

*hteps://pytorch.org/°
*https://www.tensorflow.org/ °

*https://burn.dev/®
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Setiap tensor paling tidak memiliki properti “ranking” (rank) dan “bentuk” (shape). Ranking

mengacu pada jumlah dimensi tensor dan bentuk bentuk tensor menjelaskan ukuran tensor untuk

tiap dimensi. Tabel 3 menunjukkan contoh tensor dengan ranking yang berbeda-beda.

Ranking Nama Bentuk Contoh Penggunaan
0 Skalar 0 Loss value, learning rate
1 Vekrtor (n,) Bias, data 1D
2 Matriks (n,m) matriks bobot, citra berskala abu-abu
3 Tensor 3D (n, m, p) Tumpukan teks, video berskala abu-abu
4 Tensor 3D (n,m,p,q) Tumpukan citra RGB

Tabel 3: Contoh tensor dengan berbagai ranking

Pendalaman

TODO:

Sejarah penamaan tensor

2.2. Pemanfaatan NumPy Sebagai Landasan Utama Tensor

NumPy telah menjadi standar de facto untuk komputasi numerik di Python selama lebih dari dua

dekade. Pustaka ini menyediakan implementasi larik multidimensi yang efisien dengan dukungan

operasi matematika yang telah dioptimalkan dalam bahasa C. Kita juga membutuhkan kemampuan

serupa untuk implementasi tensor kita. Namun, alih-alih menulis ulang semua operasi larik dari nol,

strategi yang lebih bijak adalah memanfaatkan kekuatan NumPy sebagai fondasi dan menambahkan

kemampuan yang dibutuhkan untuk deep learning.

NumPy menawarkan beberapa keunggulan fundamental yang membuatnya ideal sebagai back-

end untuk implementasi tensor kita:

Performa tinggi: Operasi NumPy diimplementasikan dalam C dan memanfaatkan pustaka
aljabar linier yang telah dioptimalkan seperti BLAS dan LAPACK. Hal ini memberi akses kecepatan
eksekusi yang mendekati bahasa pemrograman tingkat rendah tanpa mengorbankan kemudahan

Python.

API yang lengkap dan stabil: NumPy menyediakan ratusan fungsi untuk manipulasi larik, mulai
dari operasi dasar seperti penjumlahan hingga operasi kompleks seperti transformasi Fourier. API
ini telah teruji dan familiar bagi komunitas Python, termasuk praktisi dan peneliti.

Broadcasting: Mekanisme broadcasting NumPy memungkinkan operasi antara larik dengan
bentuk berbeda tanpa perlu replikasi data eksplisit. Potongan kode di bawah menunjukkan contoh
broadcasting pada NumPy. Fitur ini penting untuk efisiensi memori dan kecepatan komputasi
dalam deep learning. Pola yang jamak ditemukan adalah penjumlahan hasil transformasi linier
(perkalian antara matriks masukan dengan matriks bobot) dan larik bias, y = x @ w + b .

a = np.array([[1, 2, 31D
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b = np.array([[1], [2], [3]]) # Bentuk: (3, 1)
c=a-+h # Broadcasting menghasilkan larik berbentuk (3, 3)
print(c)

Luaran

[[2, 3, 41,
[3, 4, 5],
[4, 5, 6]]

Walaupun andal, kita tidak bisa secara langsung menggunakan larik NumPy di ranah deep learning
modern, karena ia hanya bertanggung jawab untuk melakukan komputasi numerik dan tidak memi-
liki kemampuan untuk melacak gradien. Pendekatan kita adalah membungkus larik NumPy dalam
kelas Tensor yang menambahkan kemampuan yang dibutuhkan untuk operasi-operasi deep learning
dengan tetap memanfaatkan efisiensi NumPy:

# Larik NumPy biasa

np_array = np.array([[1., 2.], [3., 4.1]1)
result = np_array @ np_array.T # Perkalian matriks

# Tensor kita: NumPy + kemampuan autodiff

tensor = Tensor([[1., 2.], [3., 4.]], requires_grad=True)

result = tensor @ tensor.T() # Juga perkalian matriks, namun memungkinkan
# untuk eksekusi laluan mundur

result.backward() # Gradien dihitung otomatis

print(tensor.grad) # Gradien tersedia!

2.3. Kelas Tensor

Kelas ini perlu kita rancang untuk dapat merekam riwayat operasi dan dependensi-dependensinya
(berupa tensor masukan) Berikut sketsa permulaan implementasinya.

from __future__ import annotations
from typing import Any, Callable, Self

import numpy as np
from numpy.typing import NDArray

BackwardFn = Callable[[NDArray], 1ist[NDArray | Nonel]

class Tensor:
def __init__(
self,
value: Any,
requires_grad: bool = False,

self.data: NDArray = _ensure_numpy(value)
self.grad: NDArray | None = None
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self.requires_grad: bool = requires_grad
self.backward_fn: BackwardFn | None = None
self.inputs: list[Tensor] = []
self.set_requires_grad(requires_grad)

def set_requires_grad(self, val: bool):
self.grad = np.zeros_like(self.data) if val else None
self.requires_grad = val

@property
def shape(self) — Tuple[int]:
return self.data.shape

def __repr__(self) — str:
return self.data.__repr__()

def _ensure_numpy(value: Any) — NDArray:
try:
value = np.array(value)
return value
except Exception:
raise ValueError(f"Cannot convert value to numpy array: {value}")

2.3.1. AnatomiKelas Tensor

Mari kita bedah kelas Tensor secara mendetail untuk memahami peran setiap komponen dalam
sistem autodiff kita.

2.3.1.1. Atribut Utama

Dua atribut berikut ini adalah inti dari tensor:

def __init__(

self.data: NDArray = _ensure_numpy(value)
self.grad: NDArray | None = None

Atribut data menyimpan nilai tensor sebenarnya dalam format NumPy array, sedangkan grad
Menyimpan gradien yang dihitung saat laluan balik. Perlu diperhatikan bahwa jika grad tidak bernilai
None , maka ia akan selalu memiliki bentuk yang sama dengan data . Mengapa demikian?

Ingat bahwa gradien menunjukkan “sensitivitas” setiap elemen tensor terhadap luarannya.
Bayangkan tensor x berukuran (2, 3). Jika kita melakukan operasi y = x * 2, makanilai x.data[i,j]
dipetakan ke y.data[i,j]. Gradien x.grad[i,j] menunjukkan “sensitivitas”, yang artinya, “jika
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x.data[i,j] berubah, seberapa besar pengaruhnya?” Secara matematis, x.grad[i,j] menyimpan
Oy
8xi,]-

x.grad.shape = x.data.shape .

. Karena ada tepat satu nilai gradien untuk setiap elemen data, maka haruslah benar bahwa

2.3.1.2. Mekanisme Pelacakan Gradien

Tiga atribut ini mengontrol sistem autodift kita:

def __init__(

self.requires_grad: bool = requires_grad
self.inputs: list[Tensor] = []
self.backward_fn: BackwardFn | None = None

Atribut requires_grad adalah penanda yang menentukan apakah tensor ini perlu dihitung gradien-
nya. Tensor yang demikian, misalnya tensor bobot (wezght) dan tensor bias untuk keperluan melatih
model neural network. Namun, tidak semua tensor perlu gradien, misalnya, data masukan atau skalar

konstanta.

Atribut inputs akan melacak daftar masukan dari suatu operasi. Misal, pada ¢ = a + b, c.inputs
akan berisi [a, b].Pada operasi y = exp(x), y.input akan berisi [x] . Seperti yang kita ulas di bab
sebelumnya, penting bagi kita untuk melacak riwayat masukan dari satu operasi ke operasi lain untuk

implementasi autodiff, khususnya autodift eksak.

Atribut backward_fn mengimplementasikan prosedur penghitungan gradien untuk tensor-ten-
sor yang menjadi masukan tensor ini. Misalnya, jika tensor ini hasil dari a + b, maka backward_fn
tahu cara mendistribusikan gradien ke a dan b . Jika tensor ini hasil dari a * b, maka backward_fn
tahu harus mengalikan gradien dengan pasangan yang sesuai ( a.grad dikalikan nilai b.data , gradien
b.grad dikalikan nilai a.data)

2.3.1.3. Metode dan Fungsi Bantuan

Metode shape hanya syntactic sugar yang memudahkan akses ke informasi bentuk larik NumPy yang
mendasarinya. Dengan ini, untuk mengakses shape dari data, kita cukup memanggil tensor.shape

alih-alih tensor.data.shape .

Fungsi _ensure_numpy_ bertugas mengonversi masukan apapun menjadi larik NumPy. Ini memu-

ngkinkan fleksibilitas dalam membuat tensor:

t1 = Tensor(b)

t2 = Tensor([1, 2, 3])

t4 = Tensor([[1, 21, [3, 41D
t3 = Tensor(np.eye(3))
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Metode set_requires_grad mengalokasikan atau mendealokasikan buffer gradien. Jika argumen
bernilai True, alokasikan grad dengan zeros (siap diakumulasi) dan atur requires_grad menjadi

True . Sebaliknya, atur grad menjadi None dan requires_grad menjadi False .

Metode repr adalah fungsi kenyamanan saja untuk memperoleh representasi str yang infor-
matif, terutama saat kita mencetak nilai tensor di layar. Implementasi lengkap biasanya menampilkan

data dan status gradien

Pembaca dibebaskan untuk menentukan struktur proyek pustaka ini. Penulis berasumsi

pembaca telah familiar dengan struktur kode proyek python. Kode referensi buku ini sendiri
mengacu pada rekomendasi pustaka uv 4 yang menggunakan pyproject untuk manajemen
dependency. Secara garis besar (tanpa mengulasnya kembali di bagian-bagian selanjutnya),
berikut ini struktur implementasi referensi:

lantern/

— examples/

| — linear_regression/
| L— main.py

— lantern/

|  — __init__.py
| | tensor.py
|
|
| Y nn.py

— tests/

|  — __init__.py

| L— test_tensor.py
|— pyproject.toml

F— README.md

L— uv.lock

2.4. Sistem Penghitungan Turunan Otomatis

Gradien menentukan bagaimana luaran suatu fungsi berubah terhadap masukannya. Pada konteks
deep learning, nilai gradien akan menentukan seberapa banyak kita mengubah parameter pada model.

Saat melatih model neural network, gradien akan dihitung dengan mencari turunan nilai Joss
terhadap parameter model (berupa NDArray pada atribut data kelas Tensor ). Model deep learning
belajar dengan cara mengatur parameter-parameter di dalamnya berdasarkan seberapa besar nilai /oss
yang diperolehnya. Seberapa banyak pengaturan parameter yang perlu dilakukan, ditentukan oleh
gradien. Gradien ini akan “memandu” proses pembaruan parameter sehingga parameter tersebut bisa

meminimalkan galat.

Pada konteks deep learning, kita perlu menghitung gradien fungsi Joss terhadap masing-masing
parameter. Hal ini sangat tidak mungkin dilakukan secara manual satu per satu mengingat model-
model deep learning memiliki ribuan hingga jutaan parameter (bahkan miliaran untuk model-model
kiwari). Maka dari itu, kita membutuhkan suatu cara untuk menghitung gradien secara otomatis.

*https://docs.astral.sh/uv/°
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Di sinilah sistem autodiff berperan. Sistem autodift menyediakan cara sistematis untuk menghi-
tung gradien eksak dengan cara memecah komputasi yang kompleks menjadi operasi-operasi
elementer yang lebih sederhana. Tiap operasi tersebut mengimplementasikan aturan penghitungan
gradiennya sendiri. Sistem autodift kemudian mengakumulasi gradien-gradien tiap operasi untuk
menghitung gradien keseluruhan model.

Kita bisa mengimplementasikan autodift dalam dua cara: metode maju (forward) dan

mundur (backward). Metode maju melakukan penghitungan gradien bersamaan dengan
proses laluan maju (forward pass). Sementara itu, metode mundur melakukan laluan maju
terlebih dahulu dan “merekam” operasi-operasi yang terlibat. Kemudian, ia mempropa-
gasikan gradien ke belakang operasi yang terekam tersebut. Di buku ini penulis fokus pada
implementasi metode mundur yang juga digunakan oleh pustaka deep learning seperti
PyTorch.

Fondasi utama proses kerja autodift adalah aturan rantai. Aturan rantai adalah metode kalkulus yang
digunakan untuk mencari turunan dari fungsi komposisi (fungsi yang dibentuk dari fungsi lain
Aturan rantai menjelaskan cara menghitung gradien melalui fungsi komposisi dengan mengalikan
turunan-turunan sepanjang alur komputasi. Sebagai contoh, jika kita memiliki untaian operasi seperti
y = h(g(z)), aturan rantai menetapkan

0 oy 0

9y _ 9y 9u (2.1)

ox Ou Ox
Dimanau = g(z). Pustaka kita akan memiliki fitur autodiff yang menerapkan prinsip aturan rantai

secara otomatis.

Contoh: Neural network sebagai fungsi komposisi

Neural network adalah contoh fungsi komposisi. Suatu neural network terdiri dari deretan

lapisan, di mana tiap lapisan merupakan suatu fungsi. Lapisan 1 menerima masukan,
melakukan transformasi (fully connected), mengumpankannya ke lapisan 2 (fungsi aktivasi),
kemudian lapisan 2 mengumpankannya ke lapisan selanjutnya, dan seterusnya. Secara

matematis, neural network n-lapis dengan masukan z dickspresikan dengan f(x) =

fofnaa (1))

2.5. Operasi Aritmetika Sebagai Proses Konstruksi Graf

Untuk mengimplementasikan autodiff, kita perlu cara untuk melacak semua operasi yang dilakukan
pada tensor. Bayangkan kita perlu menghitung gradien secara manual untuk ekspresi matematika
yang kompleks dan perlu mengingat setiap langkah komputasi dan hubungannya. Ini tidak realistis
untuk operasi tensor yang kompleks, terutama saat mengembangkan model deep learning.

Untuk menerapkan aturan rantai pada ribuan parameter, kita perlu cara untuk: 1) melacak
urutan operasi yang dilakukan; 2) menyimpan informasi tentang bagaimana menghitung turunan
setiap operasi; dan 3) mengetahui dependensi antar operasi. Solusinya adalah dengan membangun
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graf komputasi. Setiap kali pengguna melakukan operasi aritmetika, pustaka kita merekam operasi
tersebut dalam strukeur graf di belakang layar. Graf ini nantinya menjadi “peta” untuk propagasi

gradien saat laluan balik.

Mari kita amati bagaimana ekspresi matematika sederhana y = (a + b) X ¢ dapat direpresen-
tasikan sebagai graf komputasi. Ekspresi ini memiliki dua operasi: penjumlahan menghasilkan nilai
antara, kemudian perkalian menghasilkan hasil akhir.

Gambar 1: Operasi aritmetikay = (a + b) X c sebagai representasi graf
Proses pembentukan graf adalah sebagai berikut:

1. Saat operasi a + b dilakukan:
* Tensor baru t dibuat dengan nilai a.data + b.data
* Tensor t menyimpan [a, b] padaatribut inputs
* Tensor t menyimpan fungsi untuk propagasi gradien penjumlahan

2. Saat operasit x c dilakukan:
* Tensor baru ( y ) dibuat dengan nilai t.data * c.data
* Tensor y menyimpan [t, c] padaatribut inputs
* Tensor y menyimpan fungsi untuk propagasi gradien perkalian

Maka, graf terbentuk secara implisit melalui referensi dalam atribut inputs . Tidak perlu kelas khusus
atau struktur graf terpisah, karena graf terbentuk dalam hubungan antar tensor. Dengan fondasi ini,
kita siap mengimplementasikan operasi-operasi dasar yang akan membangun graf komputasi kita.

Nantinya kita akan menambahkan operator overloading ( __add__, __mul__) agar aktivitas
menulis kode menjadi nyaman, dan pengguna bisa menulis a + b alih-alih menulis
add(a, b), mul(a, b),dan seterusnya.

2.6. Laluan Mundur

Laluan mundur adalah langkah di maka kita menghitung gradien dengan menelusuri graf dari simpul
luaran ke semua simpul masukan. Sebelum mengimplementasikannya, mari ingat kembali intuisi
di balik laluan mundur. Misalkan kita sedang menghitung turunan fungsi komposisi f(g(h(z))).
Secara manual, kita akan:

1. Menghitung turunan terluar: f'(g(h(z)))
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2. Mengalikan dengan turunan lapisan berikutnya: f'(g(h(x)))c - ¢’ (h(x))
3. Terus mengalikan hingga mencapai variabel awal: f'(g(h(z)))c - g’ (h(z))c - h'(x)

Autodiff mengotomatisasi proses ini saat laluan mundur. Gradien “mengalir” dari simpul luaran ke
simpul masukan, ujung ke ujung, dengan setiap operasi bertanggung jawab mendistribusikan gradien
yang diterimanya ke operasi-operasi pendahulunya. simpul-simpul dalam graf akan diproses dengan
urutan secara topologis.

Berikut implementasi pengurutan simpul secara topologis.

def _topo_sort(root: Tensor):
visited: set[Tensor] = set()
topo_order: list[Tensor] = []

def _build(node: Tensor):
if node not in visited:
visited.add(node)
if node.backward_fn is not None:
for input in node.inputs:
_build(input)
topo_order.append(node)

_build(root)
return topo_order

Fungsi ini menggunakan depth-first search (DFS) dengan sedikit modifikasi. Alur kerjanya:

1. Mulai dari simpul akar (70oz, biasanya tensor nilai Joss/simpul luaran paling ujung)

2. Rekursi ke masukan-masukan simpulnya (dependensi dari simpul). Untuk setiap simpul, kun-
jungi dulu semua dependensinya

3. Setelah semua dependensi dikunjungi, tambahkan simpul ke daftar simpul yang telah diproses

Hasilnya adalah daftar simpul, di mana setiap simpul diletakkan setelah simpul-simpul masukannya
(simpul yang bergantung padanya). Saat kita membalik urutan ini ( reversed(topo_order) ), kita men-
dapat urutan yang benar untuk propagasi gradien: dari luaran ke masukan, ujung ke ujung.

Mari kita modifikasi kelas Tensor dengan menambah metode backward dan kita telaah bagian

per bagian.
class Tensor:
def backward(self, upstream_grad: NDArray | None = None):
if not self.requires_grad:

return

if upstream_grad is None:
upstream_grad = np.ones_like(self.data)

self.grad = upstream_grad
topo_order = _topo_sort(self)
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# Akumulasi gradien
for node in reversed(topo_order):
if node.backward_fn is None or node.grad is None:
continue

inputs = node.inputs
grads = node.backward_fn(node.grad)
for input, input_grad in zip(inputs, grads):
if input_grad is not None:
input.grad += input_grad

Pada metode ini, pertama, jika tensor tidak memerlukan gradien, tidak ada yang perlu dilakukan.

if not self.requires_grad:
return

Kemudian, untuk kasus khusus output (biasanya nilai Joss (Joss)) gradien terhadap dirinya sendiri
adalah 1. Ini titik awal propagasi gradien kita.

if upstream_grad is None:
upstream_grad = np.ones_like(self.data)

Dengan urutan topologis terbalik kita lakukan iterasi untuk pemrosesan tiap simpul. Lompati simpul
yang tidak memiliki fungsi backward (simpul daun) atau tidak memiliki gradien. Setelahnya, kita
panggil metode backward_fn dari tiap simpul. Di sinilah “sihir” terjadi.

Metode backward_fn mengendalikan bagaimana cara menghitung gradien lokal. Ia menerima
gradien upstream (dari operasi selanjutnya) dan menghitung gradien untuk setiap masukan operasi
ini.

# Akumulasi gradien
for node in reversed(topo_order):
if node.backward_fn is None or node.grad is None:
continue

inputs = node.inputs
grads = node.backward_fn(node.grad)
for input, input_grad in zip(inputs, grads):
if input_grad is not None:
input.grad += input_grad
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Perhatikan bagian penting ini: kita menambahkan ( += ) gradien, bukan mengganti ( = ). Mengapa?
Karena satu tensor bisa saja digunakan di beberapa operasi, dan setiap penggunaan berkontribusi pada
gradien total.

metode backward_fn berisi logika spesifik untuk menghitung gradien lokal setiap operasi.
Operasi-operasi akan menyimpan fungsi ini saat laluan maju. Detail implementasinya akan
kita lihat saat membahas operasi penjumlahan, perkalian, dan lainnya.

Pendalaman

Dengan jumlah simpul (tensor) V' dan jumlah koneksi E, kompleksitas waktu laluan
mundur kita adalah O(V + E) karena tiap simpul dan koneksi dikunjungi tepat satu kali.
Kompleksitas memori prosedur ini O(V') untuk menyimpan urutan topologis, namun tidak
terlalu nampak karena jauh didominasi oleh penyimpanan tensor-tensor pada keseluruhan
operasi.

2.7. Implementasi Operasi Pertama: Penjumlahan

Dengan infrastruktur laluan balik yang sudah siap, mari implementasikan operasi pertama: penjumla-
han (‘add ). Fungsi add mengimplementasikan laluan maju dan mundur untuk operasi penjumlahan.

def add(a: Tensor, b: Tensor) —> Tensor:
def backward_fn(upstream_grad: NDArray):
a_grad = upstream_grad if a.requires_grad else None
b_grad = upstream_grad if b.requires_grad else None
return [a_grad, b_grad]

result = Tensor(a.data + b.data, requires_grad=a.requires_grad or b.requires_grad)
result.backward_fn = backward_fn

result.inputs = [a, b]

return result

Perhatikan bahwa hasil akan melacak gradien ( requires_grad=True ) jika salah satu masukannya mela-
cak gradien. Hal ini memastikan gradien bisa mengalir mundur melalui operasi ini jika diperlukan.
Operasi add ditunjukkan oleh Gambar 2, dengan simpul bergaris putus-putus yang merupakan

kemungkinan simpul selanjutnya.

Gambar 2: Representasi simpul penjumlahan
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= 5 (— gradien upstream)
dan untuk b.grad :
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ob  Oc Ob
0y 0(a+b)
L ob 23)
dy
=2 (— gradien upstream)
Oc

Dari dua persamaan di atas, kita tahu bahwa turunan penjumlahan selalu 1. Di implementasinya, ini
berarti backward_fn cukup meneruskan upstream_grad langsung ke kedua input. Variabel kembalian
a_grad akan menjadi gradien lokal untuk tensor masukan a, begitu juga variabel kembalian b . Saat

pemanggilan backward() , a_grad akan diakumulasikan dengan a.grad .

Biasanya, dalam pengembangan model deep learning, kita akan bekerja dengan Tensor

dengan data internal yang memiliki beberapa nilai sekaligus. Di situasi ini, semua gradien
dari output terhadap masing-masing nilai akan dihitung juga sekaligus. Misal, untuk operasi
penjumlahan tensor peringkat dua (matriks) A € R**? dan B € R**? dengan Va,; € A
dan Vb,; € B kita memperoleh

Y=A+B
_ (all a12> + <b11 b12>
Qg1 Qo9 ba1 oy (2.4)

_ (an + 011 app + b12)
a91 + by Q9o + by

dengan Vy,; € Y. Jika kita ingin mencari gradien seluruh elemen Y terhadap seluruh

elemen A yang saling berkorespondensi, maka karena setiap elemen luaran y;; = a,; + b, ,

kita bisa memperoleh BZ” = 1. Sehingga, gradien yang dihitung untuk matriks A adalah

matriks berukuran sama dengan A dengan setiap elemennya bernilai 1:
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0Y11 OYi2 O(ay1+b11) O(ajatbis)

-()

daq; Oaqy . Oaqq
0ys1 9OYas | 9(aa1tbar) O(agatbss)
Oay, Oagy Oagy

(2.5)

Perhatikan contoh dengan nilai tensor berupa larik berikut ini.

Tensor([1.8, 2.8, 3.8], requires_grad=True)
Tensor([4.8, 5.8, 6.8], requires_grad=True)
add(a, b)

< T o
1 1]

y.backward()
print(f"{a.grad=}")
print(f"{b.grad=}")

Luaran

a.grad=array([1., 1., 1.])
b.grad=array([1., 1., 1.1)

. . L9y _ ay _ .
Hasilnya sesuai harapan: 50 = 1 dan 55 = 1 untuk setiap elemen.

Kita bahkan bisa melakukan operasi yang lebih kompleks, misalnya, penjumlahan tiga variabel

y = a + b + c. Kekuatan autodiff muncul saat kita merangkai operasi yang demikian (dan yang lebih

kompleks). Graf komputasi yang terbentuk sebagai berikut.

)
x

Y

Gambar 3: Representasi graf penjumlahan tiga variabely = a + b+ ¢

Berikut ini implementasinya dalam kode Python:

a = Tensor([1.8], requires_grad=True)
b = Tensor([2.8], requires_grad=True)
¢ = Tensor([3.8], requires_grad=True)
x = add(a, b) #a+b

y = add(x, ¢) # (a+bh) +c
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y.backward()

print(f"{a.grad=}")
print(f"{b.grad=}")
print(f"{c.grad=}")

N

dengan luaran berikut ini:

a.grad=array([1.])
b.grad=array([1.])
c.grad=array([1.])

U J

Gradien mengalir dari y ke 2 dan ¢, kemudian dari = ke a dan b. Setiap variabel menerima gradien 1,
sesuai dengan turunan penjumlahan.

Hal menarik terjadi saat variabel yang sama muncul beberapa kali dalam komputasi. Perhatikan
contoh di bawah.

Contoh: Penggunaan variabel berulang

Diberikan y = a + a + a dengan representasi graf beserta kodenya di bawah ini.

Gambar 4: Representasi graf penggunaan variabel berulangy = a +a+a

Tensor([2.8], requires_grad=True)
add(a, a) #a +a
add(x, a) # (a+a) + a

X o
1l

~<
1]

# Tentu saja kita bisa menulis y=add(add(a, a), a). Namun, untuk mempermudah
penjelasan
# dan visualisasi, penulis menggunakan variabel perantara “x'.

result.backward()
print(f"{a.grad=}")

Luaran

a.grad=array([3.])

C J

J N\

Kita memperoleh jawaban yang benar!

Secara matematis, mudah saja kita memahami mengapa a.grad bernilai 3. Seperti kita ketahui, a.grad

merepresentasikan %, yang berarti
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dy O(a+a+a)
da Oa
0(3a) (2.6)

Mudah pula untuk kita memahami dengan pendekatan graf komputasi. Jika kita perhatikan
Gambar 4, simpul a terkoneksi ke simpul luaran y melalui tiga jalur berbeda dalam graf komputasi.
Jalur pertama adalah a — y (langsung menuju simpul luaran), jalur kedua adalah a — 2 — y, dan

jalur ketiga adalah @ — = — y namun dengan koneksi yang berbeda dari a ke .

1. Jalur langsung a — y memberi kontribusi gradien 1
2. Jalura — x — y, dengan tepi @ — z yang pertama, memberi kontribusi gradien 1

3. Jalura — x — y, dengan tepi a — x yang kedua, memberi kontribusi gradien 1

Jika dijumlahkan seluruhnya, 1 +1 + 1 = 3, yang konsisten dengan 8§’aa) = 3 Contoh di atas

adalah alasan mengapa kode kita menggunakan operator penetapan-penjumlahan ( += ) pada fungsi

add_backward (dan juga di fungsi lainnya nanti). Jika kita menggunakan operator penetap biasa ( =)
alih-alih +=, gradien awal akan ditimpa oleh gradien yang diperoleh dari jalur lain. Ini hal yang tidak
kita harapkan! Karenanya, kontribusi gradien dari tiap jalur harus diakumulasikan untuk memper-
oleh gradien keseluruhan.

Pola akumulasi gradien ini akan muncul di semua operasi. Selalu gunakan += untuk memas-

tikan gradien dari berbagai jalur diakumulasikan dengan benar.

Tidak semua tensor perlu melacak gradien. Konstanta atau input yang tidak perlu dioptimasi bisa

menghemat memori:

a = Tensor([1.8, 2.8, 3.8], requires_grad=True)
b = Tensor([4.8, 5.8, 6.8])
add(a, b)

~<
1

y.backward()
print(f"{a.grad=}")
print(f"{b.grad=}")

a.grad=array([1., 1., 1.])
b.grad=None

Salah satu keunggulan sistem autodiff adalah kemampuan membangun operasi kompleks dari
operasi yang lebih sederhana. Mari kita lihat bagaimana perkalian bisa disimulasikan menggunakan
penjumlahan berulang:
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a = Tensor([[1, 21, [3, 4]], requires_grad=True)
b = Tensor(9)
for _ in range(8):

b = add(b, a)

b.backward()

print("a:")
print(a)
print("a.grad:")
print(a.grad)

Luaran

aE
Tensor([[1 2]
[3 4]], requires_grad=True)

a.grad:
[[8. 8.]
[8. 8.]]

Perhatikan bagaimana kita “membangun” operasi perkalian b = 8a hanya dengan menggunakan
operasi penjumlahan. Sistem autodiff kita secara otomatis menangani kompleksitas ini. Setiap iterasi
menambahkan jalur baru dalam graf komputasi, dan semua kontribusi gradien terakumulasi dengan

, , ) . . . 9(8a) _
benar. Hasilnya, gradien a adalah 8, persis seperti yang kita harapkan dari =5~ = 8.

Tentu saja, pada praktiknya kita akan mengimplementasikan operasi perkalian yang lebih

layak di bab selanjutnya yang jauh lebih efisien daripada penjumlahan iteratif. Namun
contoh ini menunjukkan prinsip penting bahwa operasi kompleks bisa dibangun dari operasi
sederhana, dan sistem autodiff akan menghitung gradien dengan benar selama setiap operasi
dasar mengimplementasikan aturan gradiennya dengan tepat.

Prinsip komposisi ini adalah fondasi deep learning modern. Lapisan neural network yang kompleks
sekalipun pada dasarnya adalah komposisi dari operasi-operasi elementer seperti penjumlahan,
perkalian, dan fungsi aktivasi.

2.8. Fitur penunjang kenyamanan

Bermatematika dalam kode akan lebih mudah bila kita bisa menulis dengan alami, seperti halnya
menulis persamaan di atas kertas. Python membolehkan kita untuk melakukan operator overloading,
sehingga alih-alih menulis y = add(add(a, b), c) kitabisamenulis y = a + b + ¢ (notasiinfiks). Kelas
Tensor bisa dimodifikasi.

class Tensor:
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def __repr__(self) — str:
return self.data.__repr__()

def __add__(self, other):
return add(self, other)

def __radd__(self, other):
other = _ensure_tensor(other)
return add(other, self)

def _ensure_tensor(value: Any) — Tensor:

if isinstance(value, Tensor):
return value

try:
value = Tensor(value)
return value

except Exception:
raise ValueError(f"Cannot convert value to Tensor: {value}")

N

Sekarang sekarang kita bisa melakukan ini:

-

Tensor([1], requires_grad=True)
y=a+a+a

y.backward()
print(a.grad)

N

Luaran

[3]

U J

Di bab selanjutnya kita akan mengimplementasikan hal serupa untuk operator lain seperti sub , mul ,
dan lainnya.
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Bab 3. Operasi Tensor

Pada bab sebelumnya, kita telah membangun fondasi sistem autodiff dengan kelas Tensor dan operasi
penjumlahan sederhana. Namun, implementasi kita masih memiliki kelemahan fundamental, salah
satunya, ketidakmampuan menangani broadcasting dengan benar saat menghitung gradien. Bab ini
akan memperbaiki kelemahan tersebut dan memperluas pustaka kita dengan berbagai operasi tensor
yang penting untuk deep learning.

3.1. Menangani Broadcasting untuk Operasi Biner Per Elemen
(Element-Wise Binary Operation)

Broadcasting adalah seperangkat aturan dalam melakukan operasi larik multidimensi dengan bentuk
berbeda. Ide utamanya adalah, larik yang kecil akan dibentangkan (seolah direplikasi) agar bentuknya
menyesuaikan larik yang lebih besar. Secara konseptual, broadcasting bekerja dengan “menggan-
dakan” tensor yang lebih kecil hingga bentuknya kompatibel dengan tensor yang lebih besar. Pustaka
NumPy sudah menangani broadcasting. Contoh:

import numpy as np
a = np.array([1.0, 2.0, 3.8])

b=2.0
print(a * b)

array([2., 4., 6.])

Jika diilustrasikan, hal ini yang seolah terjadi:

1 2 3 X 2 2 2 = 2 4 6

Gambar 5: Ilustrasi perkalian dua larik berbeda bentuk dengan mekanisme broadcasting. Larik b akan digandakan
hingga memiliki bentuk kompatibel dengan a

Contoh lain broadcasting untuk larik dimensi dua dan satu, di mana larik salah satunya (secara
konseptual) digandakan sepanjang dimensi baris, dan diilustrasikan oleh Gambar 6:

a = np.array([[1,2,3], [4,5,6], [7,8,9]1])
b = np.array([1,2,3])
print(a + b)

array([[ 2, 4, 6],
[5, 7, 9],
[ 8, 18, 12]])
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1 | 2 | 3 |1|2|3| 2 | 4 | 6

4 5 6 + 1 2 3 = 5 7 9

7 8 9 1 2 3 8 10 12

Gambar 6: Larik b akan digandakan sepanjang dimensi baris hingga memiliki bentuk kompatibel dengan a

Pembentangan yang nampak seperti replikasi ini sebetulnya konseptual saja. Implementasi
NumPy dalam bahasa C sangat efisien, sehingga tidak ada proses copy data eksak yang terjadi
di memori.

3.1.1. Kelemahan Implementasi Kita

Operasi penjumlahan yang kita implementasikan di Bab 2 sudah dapat menangani broadcasting
untuk laluan maju karena NumPy menanganinya secara otomatis. Namun, ada masalah krusial pada
saat laluan mundur. Perhatikan contoh berikut:

Contoh: Galat operasitanpapenanganan broadcasting

# Menggunakan implementasi add dari Bab 2 (tanpa unbroadcast)
a = Tensor([[1, 2, 3], [4, 5, 6]], requires_grad=True) # Shape: (2, 3)
b = Tensor([16, 20, 30], requires_grad=True) # Shape: (3,)

o
1]

add(a, b) # ¢ = [[11, 22, 33], [14, 25, 36]], shape: (2, 3)

# Lihat apa yang terjadi saat backward
c.backward() # upstream_grad di sini berbentuk (2, 3)

N

Luaran

ValueError: non-broadcastable output operand with shape (3,) doesn't
match the broadcast shape (2,3)

U J

J N\

Galat ini terjadi karena kita mencoba menambahkan larik gradien wupstream berbentuk
(2, 3) (upstream_grad ) ke b.grad yang berbentuk (3,). NumPy tidak bisa melakukan
operasi ini karena aturan broadcasting tidak berlaku untuk operasi += ketika operand kiri
memiliki bentuk yang tidak kompatibel.

Perhatikan implementasi kita yang masih naif:

def add(a: Tensor, b: Tensor) —> Tensor:
def backward_fn(upstream_grad: NDArray):
a_grad = upstream_grad if a.requires_grad else None # a_grad.shape: (2, 3)
b_grad = upstream_grad if b.requires_grad else None # b_grad.shape: (2, 3)
return [a_grad, b_grad]
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Untuk contoh di atas, saat pemanggilan backward (yang juga mengeksekusi backward_fn ), a_grad
memiliki bentuk (2, 3), begitu pun b_grad karena berasal dari c.grad mula-mula yang juga beruku-

ran (2, 3). Saat tahapan akumulasi gradien:

def backward(self, upstream_grad: NDArray | None = None):

for node in reversed(topo_order):

for input, input_grad in zip(inputs, grads):
if input_grad is not None:
input.grad += input_grad

Saat akumulasi a.grad += a_grad , tak ada masalah dengan kompatibilitas bentuk. Namun, saat aku-
mulasi b.grad += b_grad , terjadi inkompatibilitas bentuk yang menyebabkan run time error.

Yang seharusnya terjadi adalah:
* a.grad : memiliki shape berupa (2, 3) dandengan nilai array([[1, 1, 11, [1, 1, 1]1), yang saat
ini sudah benar
* b.grad : memiliki shape berupa (3,) dan dengan nilai np.array([2, 2, 2]) .Saat ini implementasi

kita tidak memperoleh hasil yang seharusnya.

Mengapa b.grad seharusnya [2, 2, 2] ? Karena ketika b di-broadcast dalam operasi maju:
* b[8] = 18 berkontribusi bagi luaran di posisi c[8,8] dan c[1,8]
* b[1] = 28 berkontribusi bagi luaran di posisi c[8,1] dan c[1,1]
* b[2] = 38 berkontribusi bagi luaran di posisi c[8,2] dan c[1,2]

Maka, gradien untuk setiap elemen b seharusnya adalah jumlah gradien dari semua posisi di mana

elemen tersebut digunakan:

b_grad[8] = c_grad[0,0] + c_grad[1,0] =1 + 1 =
b_grad[1] = c_grad[0,1] + c_grad[1,1] =1 + 1 =
b_grad[2] = c_grad[8,2] + c_grad[1,2] =1 + 1 =

Solusi permasalahan ini adalah dengan “membalik” efek broadcasting pada gradien. Jika suatu
tensor di-broadcast selama laluan maju, gradiennya harus dijumlahkan sepanjang dimensi yang
di-broadcast selama operasi laluan mundur sehingga memiliki dimensi yang sesuai dengan data

tensornya.

3.1.2. Membalik Efek Broadcasting dengan “Unbroadcasting”

Ketika tensor di-broadcast selama laluan maju, ada dua kemungkinan transformasi yang terjadi:
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1. Penambahan dimensi baru: Tensor dengan dimensi lebih sedikit mendapat dimensi tambahan di
sebelah kiri

2. Pembentangan dimensi singleton: Dimensi berukuran 1 dibentangkan menjadi lebih besar

Masalah ini bisa diatasi dengan mengimplementasikan fungsi _unbroadcast_grad . Fungsi ini bertugas
“membalik” efek broadcasting yang terjadi selama laluan maju dengan menjumlahkan gradien sepan-
jang dimensi-dimensi yang di-broadcast.

def _unbroadcast_grad(grad: NDArray, shape: tuple[int, ...]) — NDArray:
# Kasus 1: Menangani perbedaan jumlah dimensi
# Jika grad memiliki lebih banyak dimensi, jumlahkan dimensi tambahan
ndim_add = grad.ndim - len(shape)
for _ in range(ndim_add):
grad = grad.sum(axis=0)

# Kasus 2: Menangani dimensi singleton (berukuran 1)
# Jumlahkan sepanjang dimensi yang di-broadcast dari 1
for i, dim in enumerate(shape):
if dim = 1:
grad = grad.sum(axis=i, keepdims=True)

# Atribut “grad.shape’ sekarang sudah sesuai dengan nilai argumen "shape’
return grad

Fungsi _unbroadcast_grad di atas dapat menangani semua kasus broadcasting dengan hanya beberapa

baris kode.

3.2. Pemutakhiran Fungsi Penjumlahan

Dengan fungsi _unbroadcast_grad , kita dapat memperbaiki implementasi operasi penjumlahan:

def add(a: Tensor, b: Tensor) — Tensor:
def backward_fn(upstream_grad: NDArray):
# Penyesuaian upstream_grad terhadap bentuk a.grad sebelum akumulasi
a_grad = _unbroadcast_grad(
upstream_grad, a.shape
) if a.requires_grad else None
# Penyesuaian upstream_grad terhadap bentuk b.grad sebelum akumulasi
b_grad = _unbroadcast_grad(
upstream_grad, b.shape
) if b.requires_grad else None
return [a_grad, b_grad]

result = Tensor(a.data + b.data, requires_grad=a.requires_grad or b.requires_grad)
result.backward_fn = backward_fn

result.inputs = [a, b]

return result

Mari kita uji implementasi yang telah diperbaiki dengan berbagai contoh kasus.
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Contoh: Penjumlahan tanpa broadcasting

a = Tensor([[1, 2], [3, 4]], requires_grad=True)

b = Tensor([[5, 6], [7, 8]], requires_grad=True)
= add(a, b) # [[6, 8], [18, 12]]

¢.backward()

print(f"a.grad:\n{a.grad}")
print(f"b.grad:\n{b.grad}")

Luaran

a.grad:
[[1.1.]
[1. 1.]]
b.grad:
(1. 1.]
[1. 1.1]

Tanpa broadcasting, gradien langsung diteruskan tanpa perubahan.

Contoh: Broadcasting vektor ke matriks

Skenario ini cukup umum terjadi di zeural network saat menambahkan vektor bias ke hasil
transformasi linier. Anggap a adalah tensor hasil perkalian matriks masukan dan matriks

bobot.

a = Tensor([[1, 2, 3], [4, 5, 6]], requires_grad=True) # (2, 3)
b = Tensor([18, 28, 30], requires_grad=True) # (3,)

= add(a, b) # [[11, 22, 331, [14, 25, 36]]
c.backward()

print(f"a.grad:\n{a.grad}")
print(f"b.grad: {b.grad}")

Luaran

a.grad:
[[1. 1. 1.]
[1. 1. 1.]1]

b.grad: [2. 2. 2.]

Sekarang gradien b sudah dijumlahkan sepanjang dimensi yang di-broadcast dengan benar .

Contoh: Broadcasting skalar
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a = Tensor([[1.8, 2.8], [3.0, 4.8]], requires_grad=True) # (2, 2)
b = Tensor(10.0, requires_grad=True) # skalar

¢ = add(a, b) # [[11, 12], [13, 14]]

c.backward()

print(f"a.grad:\n{a.grad}")
print(f"b.grad: {b.grad}")

Luaran

a.grad:
(1. 1.]

[1. 1.1]
b.grad: 4.0

Skalar b digunakan 4 kali (untuk setiap elemen matriks 2x2) sehingga gradiennya adalah 4.

3.3. Implementasi Beberapa Operasi Biner Per Elemen Lainnya

Untuk selanjutnya, asumsikan y = g(f(a,b)), di mana f akan diimplementasikan sebagai operasi
biner yang dibahas di sub-bab berikut ini dan g merupakan fungsi yang bergantung pada f (yaitu,

kemungkinan simpul operasi selanjutnya setelah f).

3.3.1. Pengurangan

Pengurangan adalah penjumlahan dengan operand kanan ternegasi: f(a,b) = a —b = a+ (—b).
Implementasinya mirip dengan operasi penjumlahan di mana turunan-turunannya adalah

dy 0(a—b) Oy Oy

9= da  9c—oc 3.1)

dan

9y _0(a—b) 9y _ Oy
ob ob dec  Oc

Bedanya ada pada operator negasi untuk b_grad .

def sub(a: Tensor, b: Tensor) — Tensor:
def backward_fn(upstream_grad: NDArray):

a_grad = _unbroadcast_grad(
upstream_grad, a.shape

) if a.requires_grad else None

b_grad = -_unbroadcast_grad(
upstream_grad, b.shape

) if b.requires_grad else None

return [a_grad, b_grad]
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result = Tensor(a.data - b.data, requires_grad=a.requires_grad or b.requires_grad)

result.backward_fn = backward_fn
result.inputs = [a, b]
return result

3.3.2. Perkalian
Untuk f(a,b) =a - b,

da - da  Oc

dan

b ab  dc

Implementasi kode:

(3.3)

def mul(a: Tensor, b: Tensor) — Tensor:
def backward_fn(upstream_grad: NDArray):
a_grad = (
_unbroadcast_grad(b.data
if a.requires_grad

*

else None

)

b_grad = (
_unbroadcast_grad(a.data *
if b.requires_grad
else None

)

return [a_grad, b_grad]

result.backward_fn = backward_fn
result.inputs = [a, b]
return result

upstream_grad, a.shape)

upstream_grad, b.shape)

result = Tensor(a.data * b.data, requires_grad=a.requires_grad or b.requires_grad)

3.3.3. Pembagian
Untuk f(a,b) = £,
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oy _ de 9y

da Oa Oc
|9 (a 0y
= [a_(Z)} "2c (35)
_1 9
b de
dan
9y _9c Oy
ob  db Oc
_ 2(9) Oy
| Ob\b Oc
5 (3.6)
. (—p2). %Y
=a-(—b7?) 3
__a Yy
b2 de
Implementasinya:

def div(a: Tensor, b: Tensor) — Tensor:
def backward_fn(upstream_grad: NDArray):
a_grad = (
_unbroadcast_grad(upstream_grad / b.data, a.shape)
if a.requires_grad

else None
)
b_grad = (
_unbroadcast_grad(-upstream_grad * a.data / (b.data**2), b.shape)
if b.requires_grad
else None
)

return [a_grad, b_grad]

result = Tensor(a.data / b.data, requires_grad=a.requires_grad or b.requires_grad)
result.backward_fn = backward_fn

result.inputs = [a, b]

return result

3.4. Implementasi Beberapa Operasi Uner (Unary Operation)
Biasa

Untuk subbab operasi uner biasa, asumsikan y = g(f(z)) dan v = f(x), di mana f(x) akan

diimplementasikan sebagai operasi uner, yang dibahas di sub-bab berikut ini. Gradien upstream

dinotasikan dengan ¢’ (f(x)) = Z—Z.

3.4.1. Negasi

Negasi adalah operasi paling sederhana: f(z) = —z, dengan turunan 2—;‘ = —1. Maka
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def neg(x: Tensor) — Tensor:
x = _ensure_tensor(x)

def backward_fn(upstream_grad: NDArray):
x_grad = -upstream_grad if x.requires_grad else None
return [x_grad]

result = Tensor(-x.data, requires_grad=x.requires_grad)
result.backward_fn = backward_fn

result.inputs = [x]

return result

3.4.2. Eksponensial

Fungsi eksponensial f(x) = e” lazim digunakan di beragam aspek deep learning, seperti fungsi
sigmoid dan softmazx. Fungsi ini memiliki sifat unik, yaitu turunannya sama dengan fungsi itu sendiri.
Maka

dy _ dy
— = —e 3.8
dr du (3.8)
dengan implementasi sebagai berikut.
def exp(x: Tensor) —> Tensor:
x = _ensure_tensor(x)
exp_data = np.exp(x.data)
def backward_fn(upstream_grad: NDArray):
x_grad = upstream_grad * exp_data if x.requires_grad else None
return [x_grad]
result = Tensor(exp_data, requires_grad=x.requires_grad)
result.backward_fn = backward_fn
result.inputs = [x]
return result
3.4.3. Akar Kuadrat
Untuk f(z) = /z,
d d 1
w_% - (3.9)
dr du 2/x

def sqrt(x: Tensor) — Tensor:
X = _ensure_tensor(x)
sqrt_data = np.sgrt(x.data)
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def backward_fn(upstream_grad: NDArray):

x_grad = upstream_grad * (0.5 / sqrt_data) if x.requires_grad else None
return [x_grad]

result = Tensor(sqrt_data, requires_grad=x.requires_grad)
result.backward_fn = backward_fn

result.inputs = [x]

return result

3.4.4. Logaritma Natural
Untuk f(z) = In(x),

dy _dy 1 _ (d_y> Iz (3.10)

dx du z

def log(x: Tensor) —> Tensor:
x = _ensure_tensor(x)

def backward_fn(upstream_grad: NDArray):
x_grad = upstream_grad / x.data if x.requires_grad else None
return [x_grad]

result = Tensor(np.log(x.data), requires_grad=x.requires_grad)
result.backward_fn = backward_fn

result.inputs = [x]

return result

3.5. Implementasi Beberapa Operasi Reduksi

Operasi reduksi mengubah tensor menjadi bentuk yang lebih kecil dengan mengagregasi nilai sepan-
jang dimensi tertentu. Tantangan utama dalam implementasi gradien untuk operasi reduksi adalah
memahami bagaimana gradien “disebarkan kembali” dari bentuk tereduksi ke bentuk asli.

Pada prinsipnya, jika laluan maju mengagregasi banyak nilai menjadi satu, maka laluan mundur
harus mendistribusikan gradien dari satu nilai ke banyak nilai yang berkontribusi.

3.5.1. Penjumlahan Total (Summation)

Operasi penjumlahan total menjumlahkan elemen tensor sepanjang dimensi tertentu. Mari kita mulai
dengan memahami mekanisme operasi ini sebelum membahas propagasi gradiennya.

Untuk tensor X € R™*™ dengan elemen x;, kita dapat melakukan penjumlahan sepanjang

ij>
dimensi berbeda. Untuk tensor rankin 2 (matriks), kita bisa melakukan penjumlahan sepanjang

kolom (mereduksi dimensi kedua):
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Z;'L=1 L1

> T
X . = j=1"2J
5J .

L
Zj:l Lmj

y = e R™ (3.11)

n
Jj=1

Perhatikan bahwa setiap elemen y; merupakan penjumlahan dari semua elemen di baris ke-:
n
j=1

Misalkan kita memiliki Joss skalar £ yang bergantung pada y = sum(X, dim = 1). Kita ingin

menghitung % untuk setiap elemen di X. Pertama, mari kita analisis kontribusi setiap elemen.
]

Elemen z;; hanya berkontribusi pada satu elemen output, yaitu y;:
Y =Ty + T+ Ty Ty, (3.13)

Dengan menggunakan aturan rantai:

ov ol Oy,
= . 3.14
Oz;; Oy, Oz, (3:.14)
Karena y; = ZZ: | Tik> maka:
oy, 0 -
7 — oo=1 1
Oz;; Oz, kz_;xm (3:15)
Sehingga:
ov or or
= 1= 3.16
amij Jy; Jy; ( )

Ini menunjukkan bahwa setiap elemen di baris ke-¢ menerima gradien yang sama, yaitu g—;_. Untuk
3

seluruh matriks X, gradien dapat ditulis sebagai:

oL oL oL
0xyy Oxq9 °°° Oz,
or oL oL oL
—— — | Omyy Oy T Omy, (317)
X : P
oL oL oL
am'rn,l 8m'mZ o axmn

Dari derivasi sebelumnya, kita tahu bahwa 6‘? - = g £ untuk semua j. Dengan mensubstitusi hasil
j i
ini:
ot ot e
Oy, Oy; "7 Oy
By, o0 ol ot
X = | 9y2 OBy, 7 Oy, (3.18)
oL o4 o4
m OYp 7 OYm
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Contoh: llustrasi propagasigradien

Misalkan X € R?*3 adalah masukan dan y € R? adalah hasil penjumlahan total dari X
pada dimensi baris. Pada laluan maju dengan

X — (3311 Z12 9513)’ (3.19)
Lo1 Loy Tag

maka
_[(Tu1 +Tp + 3313) 3.20
Y ($214‘$224‘$23 ' (3.20)
Pada laluan mundur, misalkan gradien upstream g_e = (g 1) . Karena dampak broadcasting,
y 92
gradien g; “disebarkan” ke semua elemen baris pertama, dan g, ke semua elemen baris kedua.
or
- (gl g1 gl) (321)
0X 92 92 92

Ketika keepdims=False (bawaan kebanyakan pustaka), dimensi yang direduksi akan hilang dari luaran.
Misalnya, masukan X € R™*" akan menjadi luaran y € R™ (bukan R™*1). Saat propagasi balik,
kita harus merekonstruksi dimensi yang hilang sebelum melakukan broadcasting.

def tensor_sum(
x: Tensor, dim: int | tuple[int, ...] | None = None, keepdims: bool = False

# Normalkan argumen dimensi
if dim is None:
dim = tuple(range(x.data.ndim))
elif isinstance(dim, int):
dim = (dim % x.data.ndim,)
else:
dim = tuple(d % x.data.ndim for d in dim)

def backward_fn(upstream_grad: NDArray):

reduced_axes = dim if not keepdims else ()
if reduced_axes:

shape = list(upstream_grad.shape)

for axis in sorted(reduced_axes):

shape.insert(axis, 1)

upstream_grad = upstream_grad.reshape(shape)
x_grad = np.broadcast_to(upstream_grad, x.shape) if x.requires_grad else None
return [x_grad]

result = Tensor(
x.data.sum(axis=dim, keepdims=keepdims), requires_grad=x.requires_grad
)

result.backward_fn = backward_fn
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result.inputs = [x]
return result

3.5.2. Rataan (Mean)

Rataan adalah penjumlahan total dibagi jumlah elemen: mean(z) = + Ei\i , %; Turunannya

adalah
9 dEDINED)
Egzlnean(x)- 9z,
_1
N

(3.22)

Ini berarti gradien untuk mean adalah gradien sum dibagi dengan jumlah elemen yang dicari rataan-

nya. Perhatikan bahwa IV bergantung pada dimensi reduksi yang ditentukan:

X =[[1, 2, 3],
[4, 5, 6]] # Shape: (2, 3)

mean(X, dim=0) = [2.5, 3.5, 4.5] # N=2 untuk setiap kolom
mean(X, dim=1) = [2, 5] # N=3 untuk setiap baris
mean(X, dim=None) = 3.5 # N=6 untuk semua elemen

Untuk mean(X, dim=1) dengan upstream_grad = [1, 1]:
* Setiap elemen di baris pertama mendapat gradien 1/3
* Setiap elemen di baris kedua mendapat gradien 1/3

Implementasinya mirip dengan sum, tetapi dengan faktor skala %

def tensor_mean(
x: Tensor, dim: int | tuple[int, ...] | None = None, keepdims: bool = False

if dim is None:
dim = tuple(range(x.data.ndim))
elif isinstance(dim, int):
# Normalize single negative dimension
dim = (dim % x.data.ndim,)
else:
# Normalize tuple of dimensions (including negative ones)
dim = tuple(d % x.data.ndim for d in dim)

result = Tensor(
x.data.mean(axis=dim, keepdims=keepdims), requires_grad=x.requires_grad

def backward_fn(upstream_grad: NDArray):
# Calculate how many elements were averaged
n_elements = 1
for axis in dim:
n_elements *= x.shape[axis]
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reduced_axes = dim if not keepdims else ()
if reduced_axes:
shape = list(upstream_grad.shape)
for axis in sorted(reduced_axes):
shape.insert(axis, 1)
upstream_grad = upstream_grad.reshape(shape)

upstream_grad = upstream_grad / n_elements
x_grad = np.broadcast_to(upstream_grad, x.shape) if x.requires_grad else None
return [x_grad]

result.backward_fn = backward_fn
result.inputs = [x]
return result

3.5.3. Maksimum (Max) dan Minimum (Min)
Max:

def tensor_max(
x: Tensor, dim: int | tuple[int, ...] | None = None, keepdims: bool = False

if dim is None:
dim = tuple(range(x.data.ndim))
elif isinstance(dim, int):
# Normalize single negative dimension
dim = (dim % x.data.ndim,)
else:
# Normalize tuple of dimensions (including negative ones)
dim = tuple(d % x.data.ndim for d in dim)

result_data = x.data.max(axis=dim, keepdims=keepdims)
result = Tensor(result_data, requires_grad=x.requires_grad)

def backward_fn(upstream_grad: NDArray):
# Create mask where max values are
expanded_result = result_data
reduced_axes = dim if not keepdims else ()
if reduced_axes:
shape = list(expanded_result.shape)
for axis in sorted(reduced_axes):
shape.insert(axis, 1)
expanded_result = expanded_result.reshape(shape)

# Mask is 1 where x equals the max value
mask = (x.data = expanded_result).astype(x.data.dtype)

# Count how many times each max appears (for tie-breaking)
normalizer = mask.sum(axis=dim, keepdims=True)
mask = mask / normalizer
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# Expand upstream gradient
if reduced_axes:
shape = list(upstream_grad.shape)
for axis in sorted(reduced_axes):
shape.insert(axis, 1)
upstream_grad = upstream_grad.reshape(shape)

x_grad = mask * upstream_grad if x.requires_grad else None
return [x_grad]

result.backward_fn = backward_fn
result.inputs = [x]
return result

Min:
def tensor_min(
x: Tensor, dim: int | tuple[int, ...] | None = None, keepdims: bool = False
):

if dim is None:
dim = tuple(range(x.data.ndim))
elif isinstance(dim, int):
# Normalize single negative dimension
dim = (dim % x.data.ndim,)
else:
# Normalize tuple of dimensions (including negative ones)
dim = tuple(d % x.data.ndim for d in dim)

result_data = x.data.min(axis=dim, keepdims=keepdims)
result = Tensor(result_data, requires_grad=x.requires_grad)

def backward_fn(upstream_grad: NDArray):
# Create mask where min values are
expanded_result = result_data
reduced_axes = dim if not keepdims else ()
if reduced_axes:
shape = list(expanded_result.shape)
for axis in sorted(reduced_axes):
shape.insert(axis, 1)
expanded_result = expanded_result.reshape(shape)

# Mask is 1 where x equals the min value
mask = (x.data = expanded_result).astype(x.data.dtype)

# Count how many times each min appears (for tie-breaking)
normalizer = mask.sum(axis=dim, keepdims=True)

mask = mask / normalizer

# Expand upstream gradient
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if reduced_axes:
shape = list(upstream_grad.shape)
for axis in sorted(reduced_axes):
shape.insert(axis, 1)
upstream_grad = upstream_grad.reshape(shape)

x_grad = mask * upstream_grad if x.requires_grad else None
return [x_grad]

result.backward_fn = backward_fn
result.inputs = [x]
return result

3.6. Implementasi Beberapa Fungsi Aktivasi
3.6.1. RelLU

def relu(x: Tensor) —> Tensor:
def backward_fn(upstream_grad: NDArray):
x_grad = upstream_grad * (x.data > 0) if x.requires_grad else None
return [x_grad]

result = Tensor(np.maximum(x.data, 8), requires_grad=x.requires_grad)
result.backward_fn = backward_fn

result.inputs = [x]

return result

3.6.2. Sigmoid

def sigmoid(x: Tensor) —> Tensor:
# sigmoid(x) =1/ (1 + exp(-x))
sig_data = 1 / (1 + np.exp(-x.data))

def backward_fn(upstream_grad: NDArray):
# d/dx sigmoid(x) = sigmoid(x) * (1 - sigmoid(x))
x_grad = upstream_grad * sig_data * (1 - sig_data) if x.requires_grad else
None
return [x_grad]

result = Tensor(sig_data, requires_grad=x.requires_grad)
result.backward_fn = backward_fn

result.inputs = [x]

return result

3.6.3. Tanh

def tanh(x: Tensor) —> Tensor:
tanh_x = np.tanh(x.data)
def backward_fn(upstream_grad: NDArray) — list[NDArray | None]:
# d/dx tanh(x) = 1 - tanh(x)"2
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x_grad = upstream_grad * (1 - tanh_x**2) if x.requires_grad else None
return [x_grad]

result = Tensor(tanh_x, requires_grad=x.requires_grad)
result.backward_fn = backward_fn
result.inputs = [x]

return result

3.7. Softmax

Softmax biasanya digunakan di lapisan terakhir model neural network untuk memperoleh luaran
ternormalisasi yang jumlah totalnya 1, sechingga bisa diinterpretasikan sebagai distribusi probabilitas.
Beberapa arsitektur modern seperti transformer juga menggunakannya untuk mekanisme attention.
Misal kita memiliki rangkap (tuple) z = (21, ..., g ) € R¥, misalnya, logits kotor atau luaran lapisan
terakhir suatu model neural network. Softmax dihitung dengan

2

softmax(z) = (3.23)

e
K
=1 &7

Dengan operasi-operasi yang sudah kita implementasikan sebelumnya, mudah saja kita implemen-
tasikan operasi softmax.

def softmax(x, dim=-1):
numerator = exp(x)
return numerator / tensor_sum(numerator, dim, keepdims=True)

Namun implementasi di atas memiliki kelemahan, yaitu instabilitas numerik. Saat nilai masukan
(misal, dari logit) memiliki nilai yang sangat besar atau sangat kecil. Saat masukan bernilai sangat
besar, mendekati tak hingga, akan terjadi overflow, di mana fungsi eksponensial akan mengembalikan

np.inf .

Solusinya, kita bisa mengimplementasikan versi stabil dari softmaz.

def softmax(x: Tensor, dim: int = -1) — Tensor:

dim = dim % x.data.ndim

x_max = tensor_max(x, dim=dim, keepdims=True)
x_shifted = x - x_max

exp_x = exp(x_shifted)
sum_exp = tensor_sum(exp_x, dim=dim, keepdims=True)
return exp_x / sum_exp

Pendalaman
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Walau stabil, softmax masih menyisakan kelemahan, yaitu overconfidence. Nilai masukan
yang tinggi cenderung mendominasi distribusi probabilitas, walaupun kenyataannya model
bersifat uncertain. Untuk menanggulanginya, kita bisa menggunakan pengembangannya,
yaitu softmax dalam bentuk logaritmik, atau log-softmax.

def log_softmax(x: Tensor, dim: int = -1) — Tensor:
dim = dim % x.data.ndim

x_max = tensor_max(x, dim=dim, keepdims=True)
x_shifted = x - x_max

exp_shifted = exp(x_shifted)
sum_exp = tensor_sum(exp_shifted, dim=dim, keepdims=True)
log_sum_exp = log(sum_exp)

return x_shifted - log_sum_exp

3.8. Implementasi Operasi Perkalian Matriks

Perkalian matriks (tensor ranking 2) mungkin adalah salah satu operasi paling penting dalam deep
learning. Laluan maju operasi ini mudah saja dan sudah didukung oleh NumPy. Ekspresi penghi-
tungan gradien pada laluan mundurnya juga sederhana, hanya melibatkan sedikit perkalian matriks
dan transposisi yang melibatkan gradien upstream:

def matmul(a: Tensor, b: Tensor) — Tensor:
def backward_fn(upstream_grad: NDArray):
a_grad = upstream_grad @ b.data.T if a.requires_grad else None
b_grad = a.data.T @ upstream_grad if b.requires_grad else None
return [a_grad, b_grad]

result = Tensor(a.data @ b.data, requires_grad=a.requires_grad or b.requires_grad)
result.backward_fn = backward_fn

result.inputs = [a, b]

return result

Kendati mudah dalam kode, perlu kita cermati pemahaman konseptual di balik implementasinya.

Ingat kembali dasar perkalian matriks. Untuk matriks A € R™*™ dan B € R™*P, hasil
perkalian C = A B adalah matriks berukuran m x p. Setiap elemen ¢;; € C dihitung sebagai

= ayby (3.24)
k=1

Dengan kata lain, elemen di posisi (¢, j) dari hasil adalah darab bintik (doz product) dari baris ke-i
matriks A dengan kolom ke-j matriks B.
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Misal, kita punya nilai skalar Joss y yang bergantung pada C = AB (diilustrasikan sebagai graf
komputasi oleh Gambar 7) dan kita ingin menghitung % dan %’:. Pertama, perhatikan bahwa

setiap elemen a;;, berkontribusi ke semua elemen di baris ke-¢ dari C:

Ci1 a; b1y + o+ agbey + -+ a,by
Ciz | _ a;1b1g + o+ aybge + -+ a0 (3.25)
Cip CLilblp + et aikbkp +oe ainbnp

(=

C

Gambar 7: Representasi graf perkalian matriks C = A B yang diikuti dengan suatu fungsi sebarang dengan luaran skalar

¥y (yang diperoleh dari, misalnya, dari operasi penjumlahan total atau rataan)

Dengan menggunakan aturan rantai, gradien y terhadap elemen-elemen baris ke- dari A diperoleh

dengan
Jc;
8y 8y (]
Oa,;,q Z] Oc;; Bayy
Oy Oy acij
Ba;, = Zj Oc;j Oa;y
Oy 8' dc,
Y ij
9a;n, Zj Oc;; Oa,,,
Oy
22 B, 01y N
) aay b2j (Ingat bahwa aajz =by; karena c¢;; =
= J C” > ikbij)
Y o
J oci; ™I
(3.26)
By b.. b b T (Hasil dari langkah sebelumnya adalah darab
dc;y 11 012 0 0qy 8 4
Ay b b b bintik dan dapat ditulis sebagai perkalian ma-
= | 9ciz ?1 ?2 2p , triks)
82y bnl bn2 bnp
P
Oy Oy
Oa;q Oc;q
oy dy
Oa ;s — Oc;q BT
Oy Oy
Oa;, ¢,y
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Ekspresi di atas juga bisa diterjemahkan sebagai kontribusi elemen-elemen baris ke-7 dari A. Untuk

kemudahan, dengan sedikit “rotation abuse”, kita tuliskan g—z sebagai matriks yang elemen (¢, j)-nya

adalah %. Maka, gradien keseluruhan dari semua baris pada A jika disusun dalam bentuk matriks

menjadi
al al al Oy 9y Oy
day; Oaqy Oay,, Ocy; Ocig 777 Oeyy
ol al al oy Oy Ay
Oay,  Oags Oay,, — Ocgy  Ocgy "7 Ocyy, BT
oL ol ... _dl oy oy oy (3.27)
80‘77'1.1 aa"rn2 aamn ale 8Cm2 o chp
_§¥L __.égiIgT
0A 0C
Dengan logika serupa untuk matriks B:
0 0
9Y _ AT (3.28)
0B oC

Pada kode operasi matmul , Atribut a.grad dan b.grad berkorespondensi dengan g—z dan g—%, sedan-

gkan upstream_grad berkorespondensi dengan g—é. Sekarang makna dari baris kode pada fungsi laluan

balik matmul mulai jelas:

def matmul(a: Tensor, b: Tensor) — Tensor:

def backward_fn(upstream_grad: NDArray):
a_grad = upstream_grad @ b.data.T if a.requires_grad else None
b_grad = a.data.T @ upstream_grad if b.requires_grad else None

return [a_grad, b_grad]

3.8.1. Kasus Khusus: Batch Matrix Multiplication

Operator @ pada NumPy sudah mendukung batch matrix multiplication. Dua dimensi terakhir

diperlakukan sebagai matriks, dimensi sisanya sebagai bazch.

Operand Kiri ~ Operand Kanan Hasil
(m,n) (n,p) (m, p)
(b, m,n) (b,n,p) (b,m, p)
(b,m, n) (n,p) (b,m, p)

Tabel 4: Perilaku operator @ untuk berbagai dimensi tensor

Untuk tensor A € RP*™*7 dan B € RP>*7xP, operasi @ menghasilkan C € Rboxmxp dengan

C, = A,B, untuk setiap 7 € {1, ..., b}. Laluan maju implementasi kita otomatis mendukung ini.

Namun, ada masalah pada laluan mundur: metode .T membalik seluruh dimensi, bukan hanya

dimensi matriks. Perbaiki dengan swapaxes(-2, -1) :
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>>> x = np.zeros((2, 3, 4))
>>> x.T.shape

(4, 3, 2)

>>> x.swapaxes(-2, -1).shape
(2, 4, 3)

Fungsi backward_fn kita perbarui sebagai berikut:

def matmul(a: Tensor, b: Tensor) — Tensor:
def backward_fn(upstream_grad: NDArray):

b_T = np.swapaxes(b.data, -2, -1)

a_T = np.swapaxes(a.data, -2, -1)

a_grad = upstream_grad @ b_T if a.requires_grad else None
b_grad = a_T @ upstream_grad if b.requires_grad else None
return [a_grad, b_grad]

result = Tensor(a.data @ b.data, requires_grad=a.requires_grad or b.requires_grad)
result.backward_fn = backward_fn

result.inputs = [a, b]

return result

Sekarang implementasi kita mendukung tensor dengan dimensi sembarang.

3.9. Indexing dan Slicing

Kita juga perlu mendukung operasi indexing dan slicing pada tensor. Operasi ini penting dalam
deep deep learning, mulai dari mengambil bazch data dengan indeks tertentu, memilih fitur spesifik,
hingga implementasi operasi yang lebih kompleks seperti embedding lookup dan pemilihan sampel

pada langkah waktu tertentu untuk arsitektur rekuren.

Yang menarik dari ndexing adalah bagaimana kita menghitung gradiennya. Berbeda dengan
operasi matematika seperti perkalian atau penjumlahan yang memiliki notasi turunan formal (%),
operasi indexing tidak memiliki notasi matematis standar untuk turunannya. Ini karena indexing
bukan fungsi matematis dalam pengertian “tradisional”. Ia hanyalah operasi “pemilihan” atau

“penyalinan” elemen.

Meski begitu, aturan gradiennya sederhana: ketika kita mengambil sebagian elemen dari tensor,
gradien yang mengalir balik harus diletakkan tepat pada posisi yang sama dengan elemen yang diambil,
sementara posisi lainnya mendapat gradien nol. Ini sesuai dengan intuisi bahwa hanya elemen yang
dipilih yang berkontribusi pada tensor luaran, sehingga hanya mereka yang menerima gradien.

def index_select(x: Tensor, indices) — Tensor:
def backward_fn(upstream_grad: NDArray) — list[NDArray | None]:
if not x.requires_grad:
return [None]

x_grad = np.zeros_like(x.data)
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# Letakkan upstream_grad tepat pada lokasi terindeks
x_grad[indices] = upstream_grad

return [x_grad]
indexed_data = x.data[indices]
result = Tensor(indexed_data, requires_grad=x.requires_grad)
result.backward_fn = backward_fn

result.inputs = [x]

return result

Agar bisa menggunakannya dengan nyaman seperti indexing normal (x[i], x[:, 1:180], dst.),
tambahkan metode dunder pada kelas Tensor .

class Tensor:

def __getitem__(self, indices):
return index_select(self, indices)

3.10. Penggabungan dan Pemecahan Tensor
3.10.1. Stack

def stack(tensors: list[Tensor], dim: int = 8) — Tensor:
"""Tumpuk daftar tensor sepanjang dimensi tertentu"""
# Tangani dimensi negatif
data_list = [t.data for t in tensors]
ndim = data_list[0].ndim
if dim < @:
dim = ndim + 1 + dim

requires_grad = any(t.requires_grad for t in tensors)

def backward_fn(upstream_grad: NDArray) — list[NDArray | None]:
grads = []
for i, t in enumerate(tensors):
if t.requires_grad:
# Extract the gradient for this tensor
indices: list[slice | int] = [slice(None)] * upstream_grad.ndim
indices[dim] = i
grads.append(upstream_grad[tuple(indices)])
else:
grads.append(None)
return grads
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stacked_data = np.stack(data_list, axis=dim)

result = Tensor(stacked_data, requires_grad=requires_grad)
result.backward_fn = backward_fn

result.inputs = tensors

return result

3.10.2. Split

def split(x: Tensor, num_splits: int, dim: int = -1) = list[Tensor]:

Potong tensor menjadi bagian-bagian berukuran sama sepanjang dimensi tertentu

Tidak ada backward_fn karena operasi ini turunan dari index_select yang sudah
mengimplementasikan backward_fn
i
# Tangani dimensi negatif
if dim < @:
dim = x.data.ndim + dim

# Hitung ukuran tiap potongan
dim_size = x.shape[dim]
if dim_size % num_splits =+ 0:
raise ValueError(f"Dimension size {dim_size} not divisible by {num_splits}")

split_size = dim_size // num_splits

splits = []

for 1 in range(num_splits):
indices = [slice(None)] * x.data.ndim
indices[dim] = slice(i * split_size, (i + 1) * split_size)
splits.append(x[tuple(indices)])

return splits

3.11. Manipulasi Bentuk

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut
labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore

dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum impendere.

3.11.1. Transposisi

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut
labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore

dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum impendere.

T0DO
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3.11.2. Reshape

def reshape(x: Tensor, *shape: int) — Tensor:
x = _ensure_tensor(x)
reshaped_data = x.data.reshape(shape)

def backward_fn(upstream_grad: NDArray):

x_grad = upstream_grad.reshape(x.data.shape) if x.requires_grad else None
return [x_grad]

result = Tensor(reshaped_data, requires_grad=x.requires_grad)
result.backward_fn = backward_fn

result.inputs = [x]

return result

Modifikasi kelas Tensor

class Tensor:

def reshape(self, *shape: int):
return reshape(self, *shape)

3.12. Pemanasan: RegresiLinier

Sebelum membangun neural network yang kompleks, mari kita uji implementasi dengan model
paling sederhana: regresi linier. Regresi linier memodelkan hubungan antara masukan x € R? (tiap

sampel) dan luaran y € R sebagai:
y=x'w+b (3.29)

di mana w € R? adalah vektor bobot (weight) dan b € R adalah bias. Untuk dataset dengan n
sampel, kita peroleh X € R™*? dan semua prediksi direpresentasikan dengan notasi matriks sebagai
berikut:

y=Xw+b (3.30)

Kita gunakan Mean Squared Error (MSE) sebagai fungsi loss:
1 & N2
Lyisp = n Z (¥ — 9s) (3.31)
i=1

Mari implementasikan MSE dengan operasi tensor kita:

def mean_squared_error(y: Tensor, y_pred: Tensor) —> Tensor:
err =y - y_pred
return (err * err).mean()
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3.12.1. Dataset

Untuk latihan ini, kita menggunakan dataset California Housing yang disediakan oleh pustaka
scikit-learn . Fungsi fetch_california_housing akan mengembalikan larin NumPy. Kita standarisasi

matriks fitur dan pastikan y berukuran (n, 1). Setelah itu konversi x dan y dalam Tensor .

from sklearn.datasets import fetch_california_housing
x, y = fetch_california_housing(return_X_y=True)

(x - x.mean(axis=B)) / x.std(axis=08) # standarisasi
y = y.reshape(-1, 1)

# Konversikan ke Tensor
x = Tensor(x)
y = Tensor(y)

# Variable pembantu, jumlah feature
n_feat = x.shape[1]

3.12.2. Gradient Descent

Untuk mengoptimasi parameter, kita gunakan aturan pembaruan gradient descent:

0
w:=w— a=—Lygg

ow

0

(3.32)

di mana « adalah learning rate. Perhatikan bagaimana dengan mudahnya kita bisa memperoleh
gradien seluruh parameter dengan memanggil loss.backward() .

# Parameter dan bias.

# Perhatikan bahwa w dan b melacak gradien karena kita akan memperbarui mereka.
w = Tensor(np.random.randn(n_feat, 1), requires_grad=True)

b = Tensor(0.8, requires_grad=True)

learning_rate = 0.1

max_iter = 1000

for i in range(max_iter):
y_pred = x B w+h
loss = mean_squared_error(y, y_pred)
loss.backward()

# Pembaruan parameter sesuai gradient descent
w.data = w.data - learning_rate * w.grad # type:ignore
b.data = b.data - learning_rate * b.grad # type:ignore

# Nol-kan kembali gradien
w.zero_grad()
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b.zero_grad()

if i % 10 = 0:
print(f"loss at {i}: {float(loss.data):.2f}")

# Prediksi akhir
y_pred = x @ w+b

N

3.12.3. Kode Selengkapnya

import matplotlib.pyplot as plt

import numpy as np

from sklearn.datasets import fetch_california_housing
from tqdm import tqdm

# Penulis menamai pustaka ini dengan "Lantern". Tidak sebesar "Torch",
# namun cukup sebagai penerang ;)
from lantern import Tensor

def mean_squared_error(y: Tensor, y_pred: Tensor) — Tensor:
err =y - y_pred
return (err * err).mean()

# Kita tidak memecah dataset menjadi bagian train-test sekarang
# karena kita hanya ingin melihat seberapa baik model kita melakukan fitting
x, y = fetch_california_housing(return_X_y=True)

x = (x - x.mean(axis=8)) / x.std(axis=B) # standarisasi
y = y.reshape(-1, 1)

x = Tensor(x)

y = Tensor(y)

n_feat = x.shape[1]

Parameter dan bias.

Perhatikan bahwa w dan b melacak gradien karena kita akan memperbarui mereka.
Tensor(np.random.randn(n_feat, 1), requires_grad=True)

Tensor(0.8, requires_grad=True)

o = == 4=

learning_rate = 0.1
max_iter = 1000

for i in range(max_iter):
y_pred = x @ w+Db
loss = mean_squared_error(y, y_pred)
loss.backward()

N

S8 OPERASI TENSOR



# Parameter update
w.data = w.data - learning_rate * w.grad
b.data = b.data - learning_rate * b.grad

*

# Reset parameter gradients
w.zero_grad()
b.zero_grad()

if i % 10 = 0:
print(f"loss: {float(loss.data):.2f}")

# Prediksi akhir
y_pred = x @ w+b

# Plot prediction vs actual

plt.figure(figsize=(10, 6))

plt.plot(y.data, "b-", label="Actual", alpha=6.7)
plt.plot(y_pred.data, "r-", label="Predicted", alpha=0.7)
plt.xlabel("Sample idx")

plt.ylabel("Value")

plt.legend()

plt.show()

Luaran

loss at B: 11.42
loss at 10: 0.75
loss at 20: 08.65
loss at 30: 6.62

loss at 970: 8.52
loss at 9808: B8.52
loss at 998: 8.52

Jika implementasi kita benar, error seharusnya mendekati nol (dalam batas presisi numerik).

Dari visualisasi pada Gambar 8, kita dapat melihat bahwa model berhasil menangkap tren umum

harga rumah. Prediksi dapat mengikuti pola nilai aktual dengan cukup baik. Dengan fondasi ini, kita

siap membangun model yang lebih kompleks seperti multilayer perceptron.
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Gambar 8: Perbandingan nilai aktual (biru) dan prediksi (merah) pada dataset California Housing. Model regresi linier
berhasil menangkap tren umum meskipun tidak sempurna untuk data yang kompleks.
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Bab 4. Antarmuka Pemrograman
Aplikasi (APIl) Deep learning

Pada bab sebelumnya, kita telah membangun sistem automatic differentiation yang fungsional.
Namun, menulis model yang kompleks dengan API level rendah akan menjadi sangat merepotkan.
Melacak puluhan parameter secara manual bukan hal mudah. Belum lagi mengatur mode training/
evaluation, atau membangun arsitektur berlapis. Di sinilah kita memerlukan abstraksi yang lebih

tinggi.
PyTorch memperkenalkan konsep modul ( Module ) sebagai unsur pokok untuk membangun
neural network. Desain ini elegan karena memungkinkan kita untuk membuat komposisi hierarkis

yang alami untuk deep learning, di mana suatu modul dapat berisi beberapa modul lain. Tentu kita
juga akan membuat versi kita sendiri.

4.1. Kelas Module

Kelas Module adalah jantung dari API tingkat tinggi kita. Setiap komponen neunral network dari
lapisan sederhana hingga model kompleks akan mewarisi kelas ini.

4.1.1. Anatomi Modul

Kita mulai sketsa kelas Module dengan beberapa atribut.

class Module:
def __init__(self):
self._parameters: dict[str, Tensor] = {}
self._modules: dict[str, Module] = {}
self.training = True

Dictionary _parameters menyimpan semua tensor yang perlu dioptimasi (misal, bobot dan bias dari
lapisan linier). Dictionary _modules dapat menyimpan sub-modul yang memungkinkan kita untuk
membangun arsitektur berlapis. Penanda training menentukan perilaku module saat laluan maju.
Penanda ini penting untuk beberapa lapisan seperti dropout dan batch normalization yang berperilaku
berbeda saat mode lati dan mode inferensi.

4.1.2. Forward Pass Abstrak

class Module:

def forward(self, *args, **kwargs) — Tensor:
raise NotImplementedError()

Method forward sengaja dibuat abstrak. Setiap module konkret harus mendefinisikan logika forward
pass-nya sendiri. Ini memaksa desain yang eksplisit—tidak ada perilaku default yang mungkin menye-
satkan. Signature yang fleksibel dengan *args dan **kwargs mengakomodasi berbagai jenis module,
dari lapisan sederhana yang menerima satu tensor hingga model kompleks dengan multiple inputs.
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4.1.3. Mode Training dan Evaluasi

Metode train mengatur penanda training secara rekursif.

def train(self, mode: bool = True):
self.training = mode
for module in self._modules.values():
module.train(mode)

Ketika kita memanggil model.train() pada model tingkat teratas, semua sub-modul juga akan masuk
mode latih. Perhatikan bahwa kita tidak perlu melakukan apapun terhadap parameters di sini. Para-
meters tidak memiliki “mode” karena mereka hanya data. Yang berubah adalah bagaimana perilaku

modul menggunakan parameter—parameter tersebut.

4.1.4. Iterasi Parameter

def parameters(self):
for param in self._parameters.values():
yield param
for module in self._modules.values():
yield from module.parameters()

Metode dengan kembalian generator ini mengumpulkan semua parameter secara rekursif. Pertama,
yield semua parameter lokal, kemudian secara rekursif yzeld juga parameter dari sub-modul. Penggu-
naan generator membuat metode ini efisien dari sisi konsumsi memori karena kita tidak perlu

membuat larik besar berisi semua parameter sekaligus.

Penggunakan generator alih-alih 1list tentu memiliki konsekuensi (¢72de-off). Generator lebih
efisien untuk model besar, tapi kita tidak bisa mengindeks hasilnya atau mengetahui jumlah parameter

tanpa iterasi penuh.

PyTorch juga memiliki metode parameters() yang mengembalikan generator karena keun-

tungan efisiensi memori lebih penting untuk model modern yang bisa memiliki miliaran
parameter. Metode parameters() ini biasanya akan diakses oleh pengoptimal (optimizer).
Pembaca yang akrab dengan pustaka PyTorch mungkin mengenali pola ini:

optimizer = Adam(model.parameters(), 1r=08.001)

4.1.5. Metode Magic untuk Ergonomi

Kita akan menggunakan pola yang mirip dengan PyTorch dari segi ergonomi dengan mengimple-
mentasikan beberapa metode magic seperti __call__ dan __setattr__.

def __call__(self, *args, **kwargs) — Tensor:
return self.forward(*args, **kwargs)
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Dengan mendefinisikan  __call__, kita bisa menggunakan module seperti fungsi:
output = model(input) alih-alih output = model.forward(input) . Ini membuat kode lebih natural dan
konsisten dengan konvensi Python di mana callable objects umum digunakan.

Penimpaan metode magic __setattr__ berguna untuk registrasi modul atau parameter secara
otomatis.

def __setattr__(self, name, value):
if isinstance(value, Tensor):
self._parameters[name] = value
elif isinstance(value, Module):
self._modules[name] = value
super().__setattr__(name, value)

Setiap kali kita melakukan penetapan tensor atau module sebagai atribut objek, mereka otomatis
terdaftar di dictionary internal yang sesuai. Kita akan dimungkinkan untuk menulis sintaks secara
natural seperti ini dengan efek samping tambahan:

self.weight
self.linear

Tensor(np.random.randn(18, 5)) # Otomatis terdaftar sebagai parameter
Linear(5, 3) # Otomatis terdaftar sebagai sub-module

Tanpa ini, kita harus secara manual melakukan penetapan setiap parameter dan modul, dan ini
menambah peluang terjadinya galat.

4.1.6. ImplementasiLengkap

class Module:
def __init__(self):
self._parameters: dict[str, Tensor] = {}
self._modules: dict[str, Module] = {}
self.training = True

def forward(self, *args, **kwargs) — Tensor:
raise NotImplementedError()

def train(self, mode: bool = True):
self.training = mode
for module in self._modules.values():
module.train(mode)

def parameters(self):
for param in self._parameters.values():
yield param
for module in self._modules.values():
yield from module.parameters()

def __call__(self, *args, **kwargs) — Tensor:
return self.forward(*args, **kwargs)

def __setattr__(self, name, value):
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if isinstance(value, Tensor):
self._parameters[name] = value

elif isinstance(value, Module):
self._modules[name] = value

super().__setattr__(name, value)

4.2. Beberapa Jenis Lapisan (Layer) Dasar
4.2.1. Lapisan Linier

Lapisan linier bertugas melakukan operasi y = Wx + b. Pada lapisan ini, terjadi proses penjum-
lahan terbobot (weighted sum) pada semua fitur masukan dengan matriks W. Vektor bias b
memberikan nilai offser untuk menunjang ekspresivitas model. Berikut implementasinya:

class Linear(Module):
def __init__(self, in_features: int, out_features: int, bias: bool = True):
super().__init__()

self.in_features = in_features
self.out_features = out_features
self.bias = bias

self.w = Tensor(
np.random.randn(self.in_features, self.out_features), requires_grad=True

)

self.b = (
Tensor(np.zeros((self.out_features,)), requires_grad=True)
if self.bias
else None

)

def forward(self, x: Tensor) — Tensor:
out = x @ self.w

if self.b:
out = out + self.b
return out

Penulis mengikuti API PyTorch yang mengizinkan bias bersifat opsional. Perilaku bawaan inisialisasi
bias adalah menetapkan seluruh elemennya dengan nilai 0.

Pendalaman

Teknik lanjutan seperti Xavier [4] dan He [1] digunakan pustaka deep learning modern
untuk menginisialisasi matriks bobot self.w alih-alih menggunakan sebarang nilai acak.
Misalkan suatu model deep learning memiliki L lapisan dengan i = 1, ..., L, matriks bobot
untuk tiap lapisan [ yang dinotasikan dengan WO, dan jumlah neuron pada lapisan ke-
| yang dinotasikan dengan n;. Inisialisasi Xavier menentukan tiap entri w € W untuk
mengikuti distribusi seragam
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w U —\/ 0 \/ 6 . (4.1)
N +n \| g +mny

Varian normalnya mengikuti distribusi

2
w~ N[0, [ —— (4.2)
n;_1 + ny

Dalam terminologi Xavier, variabel n;_; disebut fan-in dan n; disebut fan-out. Sayangnya,
performa teknik Xavier disinyalir tidak begitu bagus dengan fungsi aktivasi ReLU seperti
dilaporkan oleh Kumar ez al. [S]. He et al. dalam [1] kemudian menawarkan inisialisasi

berdasarkan distribusi seragam

wet|— 2 8 (4.3)
n_ m

dan varian normalnya berdasarkan

Berikut ini implementasi keempatnya:

import numpy as np

def xavier_uniform(n_in, n_out, gain=1.0):
""Xavier/Glorot uniform initialization
bound = gain * np.sqrt(6.8 / (n_in + n_out))
return np.random.uniform(-bound, bound, (n_in, n_out))

def xavier_normal(n_in, n_out, gain=1.8):
""Xavier/Glorot normal initialization
std = gain * np.sqrt(2.6 / (n_in + n_out))
return np.random.normal(@, std, (n_in, n_out))

def he_uniform(n_in, n_out, gain=1.8):
"""He uniform initialization"""
bound = gain * np.sqrt(6.8 / n_in)
return np.random.uniform(-bound, bound, (n_in, n_out))

def he_normal(n_in, n_out, gain=1.8):
"""He normal initialization"""
std = gain * np.sqrt(2.8 / n_in)
return np.random.normal(@, std, (n_in, n_out))
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Kita bisa menggunakan salah satu fungsi di atas untuk menggantikan

np.random.rand(self.in_features, self.out_features) sesuai kebutuhan.

4.2.2. Fungsi Aktivasi Sebagai Modul

Pola umum yang bisa ditemui ... fungsi aplikasi digunakan sebagai modul.

Hal ini juga dapat ditemui pada pustaka PyTorch.

class RelLU(Module):
def forward(self, x: Tensor) — Tensor:
return relu(x)

class Sigmoid(Module):
def forward(self, x: Tensor) — Tensor:
return sigmoid(x)

class Tanh(Module):
def forward(self, x: Tensor) — Tensor:
return tanh(x)

4.2.3. Lapisan Drop-Out

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut
labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore
dolemus, fieri.

4.2.4. Lapisan Embedding

Lapisan embedding mengubah indeks diskrit (bilangan bulat) menjadi vektor kontinu berdimensi
tetap. Bayangkan kita punya kamus dengan 10.000 kata, dan setiap kata diwakili oleh indeks unik (0
sampai 9.999). Lapisan embedding memetakan setiap indeks ini ke vektor berukuran tetap, misalnya
128 dimensi.

Secara matematis, lapisan embedding dapat dipandang sebagai matriks E € Rv*4, dengan V
adalah ukuran kosa-kata dan d adalah dimensi embedding. Ketika kita memberikan indeks i, lapisan
ini mengembalikan baris ke-i dari matriks E. Operasi ini sebenarnya sama dengan melakukan
perkalian matriks antara vektor one-bot dengan matriks embedding. Namun, implementasi langsung
dengan indexing jauh lebih efisien karena kita tidak perlu membuat vektor oze-bot yang sangat jarang

(sparse).

class Embedding(Module):
def __init__(self, num_embeddings: int, embedding_dim: int):
super().__init__()
self.num_embeddings = num_embeddings
self.embedding_dim = embedding_dim
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# Inisialisasi matriks embedding dengan distribusi normal
self.weight = Tensor(
np.random.normal(@, 6.62, (num_embeddings, embedding_dim)),
requires_grad=True

)

def forward(self, input_ids: Tensor) — Tensor:
# Gunakan indexing yang sudah kita implementasikan
return self.weight[input_ids.data.astype(int)]

N

Gradien untuk lapisan embedding dihitung melalui operasi indexing yang telah kita implementasikan
sebelumnya. Ketika backpropagation terjadi, hanya baris-baris yang digunakan (yang terindeks) yang
akan menerima gradien, sementara baris lainnya tetap tidak berubah.

Lapisan embedding menjadi fondasi model-model bahasa modern seperti BERT dan GPT.
Pada model-model tersebut, setiap foken (kata atau subkata) dipetakan ke vektor embedding yang
kemudian diproses oleh lapisan-lapisan tzansformer (yang akan kita implementasikan juga di bagian
selanjutnya).

Contoh: Contoh penggunaan lapisan embedding

Mari kita lihat bagaimana lapisan embedding bekerja dalam praktiknya:

# Kosa-kata sederhana: indeks untuk kata-kata

vocab = {"<pad>": @, "halo": 1, "dunia": 2, "deep": 3, "learning": 4}
vocah_size = len(vocab)

embedding_dim = 4

# Buat lapisan embedding
embed_layer = Embedding(vocab_size, embedding_dim)

# Kalimat sebagai deretan indeks
# "halo halo learning" = [1, 1, 4]
sentence_indices = Tensor(np.array([1, 1, 4]))

# Laluan maju
embeddings = embed_layer(sentence_indices)
embeddings.backward()

print("Embedding weight")
print(embed_layer.weight)
print("Embedding weight.grad")
print(embed_layer.weight.grad)
print("Embedding result")

print(embeddings)
print(f"Shape: {embeddings.shape}") # (3, 8) - 3 kata, masing-masing 4
dimensi
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Embedding weight
array([[-8.81665979, 0.81320985, 0.80948399, ©.82108722],
[-0.81865394, 0.8582143 , -0.01788336, 0.00022806],
[-8.01375527, -8.08489541, -8.00520801, -08.080751396],
[ 0.82269423, -8.00837957, 0.02449486, -0.01828196],
[-8.00226322, ©.81171692, -8.01726989, -8.08774343]1)
Embedding weight.grad
[[6. 8. 8. 8.]
[2. 2. 2. 2.]
[6. 8. 0. 0.]
[6. 8. 0. 0.]
[1. 1. 1. 1.]1]
Embedding result
array([[-0.81865394, ©.8582143 , -8.01788336, 0.00022806],
[-0.01865394, 0.8582143 , -8.01788336, 0.00022806],
[-0.00226322, ©.81171692, -8.01726989, -8.08774343]1)
Shape: (3, 4)

-_ o0 © N

Perhatikan bahwa baris pertama dan kedua hasil embedding sama karena kita mengulang
indeks kata “halo” (1) dua kali. Karena itu pula baris kedua pada weight.grad bernilai dua,
karena data pada baris ini berkontribusi sebanyak dua kali bagi luaran.

4.3. Lapisan Sekuensial

Lapisan sekuensial menerima modul-modul pada konstruktor dengan mempertahankan urutannya.
Saat forward() dipanggil, lapisan ini akan menerima masukan yang kompatibel dengan modul
pertama pada sekuens. Modul pertama akan memanggil forward() , kemudian luarannya menjadi
masukan modul selanjutnya, kemudian luarannya jadi masukan modul selanjutnya, dan seterusnya,

secara berurutan.

class Sequential(Module):
def __init__(self, *modules):
super().__init__()
for i, module in enumerate(modules):

setattr(self, str(i), module)
def forward(self, x: Tensor) — Tensor:
for module in self._modules.values():

x = module(x)
return x
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4.4. FungsilLoss (Loss Function)

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore
et dolore magnam aliquam quaerat.

4.4.1. MSE

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore
et dolore magnam aliquam quaerat.

4.4.2. Cross-Entropy
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore

et dolore magnam aliquam quaerat.

class CrossEntropylLoss(Module):
def __init__(self, dim: int = -1):
super().__init__()
self.dim = dim

def forward(self, logits: Tensor, targets: Tensor) — Tensor:

log_probs = log_softmax(logits, dim=self.dim)

loss_per_sample = -(targets * log_probs).sun(dim=self.dim)

return tensor_mean(loss_per_sample)

4.5. Pengoptimal (Optimizer)

Pengoptimal adalah komponen dalam ekosistem deep learning yang bertanggung jawab mengatur
pembaruan parameter model berdasarkan gradien yang dihitung selama propagasi balik. Kelas
ini memberi abstraksi terhadap pembaruan parameter secara manual. Pengoptimal mengimplemen-
tasikan berbagai varian dari ide dasar gradient descent. Namun, gradient descent murni memiliki
beberapa kelemahan fundamental yang membuatnya kurang praktis untuk model modern. Mari kita
bahas evolusi dari pengoptimal sederhana hingga yang lebih mutakhir.

4.5.1. Kelas Basis

Semua pengoptimal dalam pustaka kita akan mewarisi kelas basis yang mendefinisikan antarmuka

umum.

from typing import Iterable
import numpy as np

from .tensor import Tensor
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class Optimizer:
def __init__(self, parameters: Iterable[Tensor]):
self.parameters = list(parameters)
def step(self):
pass

def zero_grad(self):

for param in self.parameters:
param.zero_grad()

Metode step() adalah bagian utama dari pengoptimal, di mana pembaruan parameter terjadi.
Setiap pengoptimal konkret akan mengimplementasikan logika pembaruannya sendiri di metode
ini. Metode zero_grad() juga penting karena sistem autodiff kita mengakumulasi gradien. Tanpa
me-nol-kan gradien setelah setiap iterasi, gradien dari iterasi sebelumnya akan terus terakumulasi,

menghasilkan pembaruan yang keliru.

4.5.2. Stochastic Gradient descent (SGD)

SGD adalah pengoptimal paling fundamental dalam deep learning. Meskipun sederhana, SGD
masih banyak digunakan karena sifatnya yang dapat diprediksi dan terbukti efektif untuk berbagai
masalah. Aturan pembaruannya mengikuti konsep gradient descent yang pernah kita bahas pada
Persamaan (3.32).

class SGD(Optimizer):
def __init__(self, parameters: Iterable[Tensor], 1r: float = 08.01):
super().__init__(parameters)
self.1r = 1r

def step(self):
for param in self.parameters:
if param.grad is not None:
param.data -= self.lr * param.grad

Kesederhanaan SGD adalah kekuatan sekaligus kelemahannya. Tidak ada mekanisme adaptif, tidak
ada momentum, hanya langkah konstan ke arah berlawanan gradien. Ini membuat SGD mudah
dipahami dan diawakutu, tapi juga membuatnya lambat konvergen dan sensitif terhadap pemilihan

learning rate.

Implementasi SGD pada pustaka PyTorch sudah mengadopsi momentum dan Nesterov

4.5.3. RMSprop

RMSprop (root mean square propagation) adalah pengoptimal pertama yang memperkenalkan kon-
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sep learning rate adaptif. Diperkenalkan pada Lecture 6 Coursera oleh Hinton’, RMSprop mengatasi
masalah learning rate yang terlalu besar atau kecil dengan menyesuaikannya berdasarkan magnitudo
riwayat gradien. Ide utamanya adalah parameter dengan gradien besar secara konsisten seharusnya
mendapat learning rate efektif yang lebih kecil, sementara parameter dengan gradien kecil seharusnya
mendapat learning rate yang lebih besar. Aturan pembaruan RMSprop adalah sebagai berikut:

v, = v,y + (1 —B)g}

a (4.5)
6, =6,  ——2
t t—1 mgt

Variabel v, dilangkah waktu ¢ berkorespondensi dengan masing-masing skalar parameter model, 6 €

O.

class RMSprop(Optimizer):
def __init__(
self,
parameters: Iterable[Tensor],
1r: float = 0.01,
alpha: float = 0.99,
eps: float = 1e-8

super().__init__(parameters)
self.1r = 1r

self.alpha = alpha

self.eps = eps

self.v = [np.zeros_like(param.data) for param in self.parameters]
def step(self):
for i, param in enumerate(self.parameters):
if param.grad is None:

continue

grad = param.grad

self.v[i] = self.alpha * self.v[i] + (1 - self.alpha) * (grad ** 2)

param.data -= self.lr * grad / (np.sqrt(self.v[i]) + self.eps)

4.5.4. Adam

Adam (Adaptive Moment Estimation) [6] menggabungkan ide momentum dan learning rate adaptif
per parameter. Adam cenderung menjadi pilihan defanlt untuk banyak praktisi karena performanya
yang konsisten untuk beragam masalah. Adam menyimpan dua momen statistik untuk setiap para-

meter, yaitu, 1) momen pertama m sebagai estimasi rata-rata bergerak dari gradien; dan 2) momen

*https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf®
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kedua v: Estimasi rata-rata bergerak dari kuadrat gradien. Aturan pembaruan Adam adalah sebagai
berikut:

my = Bymy_y + (1 —B1)g,
vy = Bovy 1+ (1— 51;)9152

—L
t t
1—

g (4.6)
B, = —*
L1

m
— t

B LV /lA)t + €
dengan hyperparameter 3, dan 8, untuk mengontrol seberapa cepat estimasi momen “melupakan”
nilai-nilai lama, dan hyperparameter € untuk mencegah pembagian dengan nol. Variabel m, dan v, di

langkah waktu ¢ berkorespondensi dengan masing-masing skalar parameter model, 6, € ©. Berikut
implementasinya dengan Python.

class Adam(Optimizer):
def __init__(
self,
parameters: Iterable[Tensor],
1r: float = 0.001,
betal: float = 0.9,
beta2: float = 0.999,
eps: float = 1e-8,

super().__init__(parameters)
self.lr = 1r

self.betal = betal
self.beta?2 = beta?

self.eps = eps

self.t = @ # time step, akan bertambah tiap ‘.step()' dieksekusi
# Inisialisasi penampung momentum

self.m = [np.zeros_like(param.data) for param in self.parameters]
self.v = [np.zeros_like(param.data) for param in self.parameters]

def step(self):
self.t += 1

for i, param in enumerate(self.parameters):
if param.grad is None:
continue

grad = param.grad

# Perbarui estimasi bias momen pertama
self.m[i] = self.betal * self.m[i] + (1 - self.betal) * grad
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# Perbarui estimasi bias momen kedua
self.v[i] = self.beta2 * self.v[i] + (1 - self.beta2) * (grad**2)

# Koreksi bias untuk momen pertama

m_hat = self.m[i] / (1 - self.betal**self.t)
# Koreksi bias untuk momen kedua

v_hat = self.v[i] / (1 - self.beta2**self.t)

# Perbarui parameter
param.data -= self.lr * m_hat / (np.sqrt(v_hat) + self.eps)

Momen pertama membantu melewati area datar dan mengurangi osilasi. Setiap parameter memiliki
learning rate efektif sendiri berdasarkan riwayat gradiennya. Selain itu, koreksi bias memastikan
estimasi akurat di awal pelatihan.

Dalam praktiknya, tidak ada pengoptimal yang “terbaik” untuk semua kasus. Pilihan pen-

goptimal bergantung pada:

* Jenis arsitektur (CNN vs RNN vs Transformer)
* Ukuran dataset

* Anggaran komputasi

* Kebutuhan generalisasi vs kecepatan konvergensi

Prinsip dasar: mulai dengan Adam untuk purwarupa cepat, lalu coba SGD+Momentum
untuk generalisasi lebih baik jika ada waktu untuk melakukan tuning. Biasanya Adam saja

sudah cukup.

4.5.5. AdamW

AdamW adalah varian Adam yang memisahkan efek wezght decay dari gradien. Hal ini ternyata meng-
hasilkan regularisasi yang lebih efektif dan berdampak baik pada generalisasi model. Model populer

seperti Transformer dilatih dengan pengoptimal ini.

class AdamW(Optimizer):
def __init__(
self,
parameters: Iterable[Tensor],
1r: float = 0.001,
betas: tuple[float, float] = (8.9, 0.999),
eps: float = Te-8,
weight_decay: float = 0.01

super().__init__(parameters)
self.lr = 1r

self.betal, self.beta2 = betas
self.eps = eps

self.weight_decay = weight_decay
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self.t = @ # time step, akan bertambah tiap ‘.step()' dieksekusi

self.m = [np.zeros_like(param.data) for param in self.parameters]
self.v = [np.zeros_like(param.data) for param in self.parameters]

def step(self):
self.t += 1

for i, param in enumerate(self.parameters):
if param.grad is None:
continue

grad = param.grad

self.m[i]
self.v[i]

self.betal * self.m[i] + (1 - self.betal) * grad
self.beta2 * self.v[i] + (1 - self.beta2) * (grad ** 2)

# Koreksi bias
m_hat = self.m[i] / (1
v_hat = self.v[i] / (1

self.betal ** self.t)
self.beta2 ** self.t)

# Pembaruan dengan weight decay terpisah (a.l., bukan di gradien)
param.data -= self.lr * (

m_hat / (np.sqrt(v_hat) + self.eps) +

self.weight_decay * param.data

)

4.6. Multi-Layer Perceptron (MLP) dengan APl baru

Dengan semua komponen yang telah kita bangun, mari kita mengujinya dengan API tingkat tinggi
kita dengan membangun dan melatih MLP untuk klasifikasi digit tulisan tangan.

4.6.1. Pewarisan kelas Module

Pendekatan pertama adalah membuat kelas MLP yang mewarisi Module. Ini memberikan kontrol
penuh atas arsitektur dan alur data:

import lantern

from lantern.nn import CrossEntropylLoss, Linear, Module, RelU
from sklearn.datasets import load_digits

from sklearn.preprocessing import OneHotEncoder

from lantern.optim import Adam
from lantern.tensor import Tensor

X, y = load_digits(return_X_y=True)

x = x / x.max()

y = y.reshape(-1, 1) # type:ignore

y_one_hot = OneHotEncoder(sparse_output=False).fit_transform(y)

x = Tensor(x)
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y_one_hot = Tensor(y_one_hot)

class MLP(Module):
def __init__(self):
super().__init__()

self.11 = Linear(64, 256)
self.12 = Linear(256, 256)
self.13 = Linear(256, 10)
self.actl = RelLU()
self.act2 = ReLU()

def forward(self, x: Tensor) — Tensor:
x = self.act1(self.11(x))

x = self.act2(self.12(x))
x = self.13(x)
return x

model = MLP()
loss_fn = CrossEntropylLoss()
optim = Adam(model.parameters())

for i in range(5600):
optim.zero_grad()

logits = model(x)

loss = loss_fn(logits, y_one_hot)
loss.backward()

print(loss)

optim.step()

Pendekatan ini memberikan fleksibilitas maksimal bagi pengguna. Kita bisa menambahkan logika
khusus di metode forward , seperti dropout kondisional atau koneksi lompatan (skzp connections).

4.6.2. APl Lapisan Sekuensial

Untuk arsitektur yang lebih sederhana dan linear, kita bisa menggunakan Sequential :

model = Sequential(
Linear(64, 256),
ReLU(),
Linear(256, 256),
ReLU(),
Linear(256, 18),
)

loss_fn = CrossEntropyloss()
optim = Adam(model.parameters())
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for i in range(500):
optim.zero_grad()

logits = model(x)

loss = loss_fn(logits, y_one_hot)
loss.backward()

print(loss)

optim.step()

API Sequential lebih ringkas untuk arsitektur sederhana, tapi kurang fleksibel. Pilihan antara kedu-
anya tergantung pada kompleksitas model yang dibutuhkan. keduanya juga bisa dikombinasikan satu
sama lain. Misalnya, kita bisa membuat kelompok modul, membungkusnya dalam lapisan sekuensial,
dan menggunakannya secara berulang dalam modul lain.
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Bab 5. Lapisan Lanjutan

5.1. Lapisan Konvolusional Dua Dimensi

Lapisan konvolusional adalah komponen penting dalam pada deep learning, terutama untuk pemros-
esan citra dan data yang memiliki struktur spasial. Berbeda dengan lapisan linier yang memperlakukan
setiap piksel secara independen, lapisan konvolusional mempelajari hubungan spasial antar piksel

dengan menggunakan filter (kernel) yang bergeser melintasi citra masukan.

5.1.1. Intuisi dan Motivasi

Dalam pengolahan citra tradisional, filter konvolusi telah lama digunakan untuk deteksi tepian, efek
buram, penajaman, dan berbagai operasi pemrosesan citra lainnya. Deep learning mengadopsi konsep
ini. Bedanya, parameter filter dipelajari secara otomatis melalui proses pelatihan, bukan dirancang

manual.

Gambar 9: Contoh penggunaan gaussian filter untuk menghasilkan citra buram

Secara formal, operasi konvolusi untuk citra multikanal (multi-channel image) didefinisikan oleh

C,—1k,—1k,—1
gcout’i’J Z Z Z Cm,Z u7.7 v ) wcoutvcm’u v + bcout (51)
cp,=0 u=
dengan keterangan variabel-variabel berikut ini

Variabel Keterangan
g luaran konvolusi
T citra masukan konvolusi
w filter konvolusi
b vektor bias
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jumlah kanal citra masukan

jumlah kanal citra luaran

ky, tinggi filter konvolusi

k., lebar filter konvolusi

i, 7 posisi spasial pada luaran
Cins Cout indeks kanal

U, v indeks posisi filter

5.1.2. Konvolusi Sebagai Perkalian Matriks

Meskipun konvolusi tampak sebagai operasi yang kompleks, pada implementasinya sering diubah
menjadi perkalian matriks untuk efisiensi komputasi. Transformasi ini melibatkan tiga langkah

utama:

1. Im2Col: Mengubah patches dari citra masukan menjadi kolom-kolom dalam matriks
2. Perkalian matriks: Melakukan perkalian matriks biasa
3. Reshape: Mengatur ulang hasil perkalian menjadi peta fitur berupa tensor ranking 4 (bukan 3

karena kita akan memproses dalam mode bazch)

Pendekatan ini memungkinkan pemanfaatan pustaka aljabar linier yang sudah dioptimalkan seperti

BLAS.

5.1.3. Im2Col

Algoritma Im2Col adalah teknik untuk mengubah operasi konvolusi menjadi perkalian matriks. Ide
dasarnya adalah “menghamparkan” tutupan-tutupan (patches) dari citra masukan menjadi kolom
atau baris dalam matriks.

Secara historis, pada implementasi awal pustaka deep learning im2col akan menghamparkan

tutupan memanjang sebagai kolom, dan karena itulah prosedur ini disebut im2col, 7mage
patches to columns. Beberapa pustaka deep learning dan implementasi pada buku ini akan
menghamparkan tutupan-tutupan citra sebagai baris.

Untuk setiap posisi jendela geser pada citra masukan, lakukan ekstraksi tutupan berukuran filter dari
citra. Ratakan tutupan menjadi vektor kolom. Kemudian susun semua kolom secara berdampingan

Sebagai contoh, misalkan kita memiliki citra skala keabuan (1 kanal) 4 x 4 dan filter 3 x 3:

_
1 2 3 | 4]

5 6 7 8
+Fatupan-1 d e f
9 10 | 11 | 12

13| 14 | 1S5 [ T6]

a b c

— | g | h i

Gambar 1: Contoh konvolusi pada citra abu berukuran 4 x 4 dengan filter berukuran 3 x 3. Filter akan bergeser satu
langkah ke kanan dan satu langkah ke bawah
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Im2Col akan mengekstraksi 4 tutupan (2 X 2 posisi luaran) seperti ditunjukkan pada Gambar 2.

Tutupan 1 Tutupan 2 Tutupan 3 Tutupan 4
1 2 3 2 3 4 5 6 7 6 7 8
S 6 7 6 7 8 9 10 11 10 11 12
9 10 11 10 11 12 13 14 15 14 15 16

Gambar 2: Tutupan-tutupan berdasarkan oleh jendela filter

Setelah tutupan-tutupan citra dihamparkan menjadi tumpukan baris (matriks berukuran 4 x 9)
dan filter dihamparkan menjadi kolom, bisa dilakukan perkalian matriks biasa, ditunjukkan pada
Gambar 1.

h

i

Gambar 1: Perkalian matriks antara citra dan filter yang dihamparkan. Pada contoh ini, hanya ada satu kanal warna pada

citra (derajat keabuan) dan hanya satu filter luaran (respons filter juga memiliki satu kanal)

Contoh di atas hanya untuk satu kanal citra masukan dan luaran. Jika kita memiliki masukan dan
luaran dengan beberapa kanal, ukuran matriks tentu akan berbeda. Untuk masukan dengan, misal-
nya, 3 kanal (citra RGB) berukuran 4x4 dengan filter 3x3 untuk kanal luaran 64:

* Citra masukan berbentuk 1 x 3 x 4 x 4

* Filter berbentuk 64 x 3 x 3 x 3

Im2Col akan menghasilkan tumpukan tutupan berupa matriks dengan bentuk (1x2x2, 3x3x3) =
(4, 27). Setiap baris berisi 27 elemen: 3 kanal x 3x3 kernel = 27 nilai untuk tiap tutupan. Akan ada 4
baris untuk 4 posisi luaran berbentuk 2 x 2 (seperti pada Gambar 2). Untuk luaran multikanal, filter
dihamparkan dan disusun hingga berbentuk (3 x 3 x 3, 64) = (27, 64).

Berikut implementasi im2col:

def im2col(

input_data: NDArray,
filter_h: int,
filter_w: int,
stride_h: int = 1,
stride_w: int = 1,
pad_h: int = 0,
pad_w: int = 0,
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) — NDArray:
N, C, H, W = input_data.shape

# Hitung dimensi luaran
out_h = (H + 2 * pad_h - filter_h) // stride_h + 1
out_w = (W + 2 * pad_w - filter_w) // stride_w + 1

# Persiapkan padding untuk masukan, namun pertahankan dimensi batch dan
# dimensi kanal
img = np.pad(
input_data, [(0, 8), (8, 0), (pad_h, pad_h), (pad_w, pad_w)], "constant"
)

# Inisialisasi larik multidimensi untuk tutupan-tutupan dari citra:
col = np.zeros((N, C, filter_h, filter_w, out_h, out_w))

# Ekstraksi tutupan-tutupan dengan jendela geser
for y in range(filter_h):
y_max =y + stride_h * out_h
for x in range(filter_w):
x_max = x + stride_w * out_w
col[:, :, vy, x, :, :1 =1img[:, :, y:y_max:stride_h, x:x_max:stride_w]

*

# Transpose: (N, C, filter_h, filter_w, out_h, out_w) menjadi

i (N, out_h, out_w, C, filter_h, filter_w)

# Reshape: Gabungkan posisi spasial (Nxout_hxout_w) dan ratakan dimensi filter
# (Cxfilter_hxfilter_w)

col = col.transpose(8, 4, 5, 1, 2, 3).reshape(N * out_h * out_w, -1)

return col

5.1.4. Col2Im

Operasi col2im merupakan transformasi kebalikan dari im2col yang berperan dalam propagasi balik
lapisan konvolusi. Sementara im2col mengekstrak dan menyusun tutupan-tutupan citra menjadi
matriks untuk efisiensi komputasi, col2im melakukan rekonstruksi sebaliknya: mengembalikan rep-

resentasi matriks kolom ke format tensor citra multidimensi aslinya.

Pada konteks konvolusi beberapa piksel muncul di beberapa tutupan karena adanya overlap antar
jendela filter yang bergeser. Fenomena overlap ini memerlukan strategi khusus dalam rekonstruksi,
yaitu dengan mengakumulasi kontribusi dari setiap tutupan yang mengandung piksel tersebut. Proses
akumulasi ini menggambarkan bagaimana gradien dari berbagai posisi luaran konvolusi berkontribusi
terhadap gradien di posisi masukan tertentu.

def col2im(
col: NDArray,
input_shape: tuple[int, ...],
filter_h: int,
filter_w: int,
stride_h: int = 1,
stride_w: int = 1,
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pad_h: int = 8,
pad_w: int = 0,

) = NDArray:
N, C, H, W = input_shape
out_h = (H + 2 * pad_h - filter_h) // stride_h + 1

out_w = (W + 2 * pad_w - filter_w) // stride_w + 1
col = col.reshape(N, out_h, out_w, C, filter_h, filter_w).transpose(
8, 3, 4, 5,1, 2

img = np.zeros((N, C, H + 2 * pad_h + stride_h - 1, W + 2 * pad_w + stride_w - 1))
for y in range(filter_h):
y_max = y + stride_h * out_h
for x in range(filter_w):
x_max = x + stride_w * out_w
img[:, :, y:y_max:stride_h, x:x_max:stride_w] += coll:, :, vy, x, :, :]

*

return img[:, :, pad_h : H + pad_h, pad_w : W + pad_w]

Verifikasi kebenaran implementasi col2im dapat dilakukan dengan menguiji sifat inversnya terhadap
im2col. Untuk kasus stride=1 dan padding yang mempertahankan dimensi, aplikasi berurutan im2col
diikuti col2im seharusnya menghasilkan tensor identik dengan masukan awal. Namun, perlu dicatat
bahwa untuk konfigurasi stride lebih dari 1, properti invers sempurna ini tidak selalu terpenuhi karena
adanya subsampling yang menyebabkan hilangnya informasi.

5.1.5. Fungsi Konvolusi

Laluan maju dalam conv2d memanfaatkan transformasi im2col untuk mengubah operasi konvolusi
menjadi perkalian matriks biasa. Filter di-reshape menjadi matriks dengan cara yang kompatibel
dengan luaran im2col. Hal ini memungkinkan dilakukannya operasi GEMM (general matrix mul-
tiply) dengan sangat cepat dan efisien oleh pustaka BLAS (atau cuBLAS pada platform CUDA)
untuk menghitung seluruh luaran. Setelah perkalian matriks, hasil di-reshape dan ditransposisi untuk

mendapatkan format tensor luaran dengan ranking 4 sesuai harapan.

Gradien terhadap masukan dihitung dengan menerapkan konvolusi tertransposisi menggunakan
col2im. Gradien terhadap filter dihitung melalui perkalian matriks antara masukan yang telah ditrans-
formasi ( col_input ) dengan gradien upstream. Untuk bias, gradien diperoleh dengan menjumlahkan
gradien wupstream sepanjang dimensi batch dan spasial. Ini menggambarkan bias uang dibagikan

sepanjang seluruh lokasi spasial.

def conv2d(

input: Tensor,

weight: Tensor,

bias: Tensor | None = None,

stride: int | tuple[int, int] = 1,

padding: int | tuple[int, int] | str = 8,
) = Tensor:

if isinstance(stride, int):
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stride_h = stride_w = stride
else:
stride_h, stride_w = stride

N, C_in, H, W = input.shape
C_out, C_in_w, kernel_h, kernel_w = weight.shape

# Penanganan padding
if isinstance(padding, str):
if padding = "valid":
pad_h = pad_w = 0
elif padding = "same":
pad_h = ((H - 1) * stride_h + kernel_h - H) // 2
pad_w = ((W - 1) * stride_w + kernel_w - W) // 2
else:
raise ValueError(f"Unknown padding mode: {padding}")
elif isinstance(padding, int):
pad_h = pad_w = padding
else:
pad_h, pad_w = padding

# Hitung ukuran luaran
H_out = (H + 2 * pad_h - kernel_h) // stride_h + 1
W_out = (W+ 2 * pad_w - kernel_w) // stride_w + 1

# Forward pass using imZ2col

col_input = im2col(input.data, kernel_h, kernel_w, stride_h, stride_w, pad_h,
pad_w)

col_W = weight.data.reshape(C_out, -1).T

out
out

col_input @ col_W
out.reshape(N, H_out, W_out, C_out).transpose(8, 3, 1, 2)

# Tambahkan bias jika tersedia
if bias is not None:
out = out + bias.data.reshape(1, -1, 1, 1)

requires_grad = (
input.requires_grad
or weight.requires_grad
or (bias is not None and bias.requires_grad)

)

result = Tensor(out, requires_grad=requires_grad)

def backward_fn(upstream_grad: NDArray):
# Gradien terhadap input
input_grad = None
if input.requires_grad:
dout_reshaped = upstream_grad.transpose(8, 2, 3, 1).reshape(-1, C_out)
dcol = dout_reshaped @ col _W.T
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input_grad = col2im(
dcol, input.shape, kernel_h, kernel_w, stride_h, stride_w, pad_h,
pad_w

# Gradien terhadap filter

weight_grad = None

if weight.requires_grad:
dout_reshaped = upstream_grad.transpose(8, 2, 3, 1).reshape(-1, C_out)
weight_grad = col_input.T @ dout_reshaped
weight_grad = weight_grad.T.reshape(C_out, C_in_w, kernel_h, kernel_w)

# Gradien terhadap hias

bias_grad = None

if bias is not None and bias.requires_grad:
bias_grad = upstream_grad.sum(axis=(8, 2, 3))

return [input_grad, weight_grad, bias_grad]

result.backward_fn = backward_fn
result.inputs = [input, weight] if bias is None else [input, weight, bias]

return result

5.1.6. Modul Conv2d

class Conv2d(Module):
def __init__(

self,
in_channels: int,
out_channels: int,
kernel_size: int | tuple[int, int],
stride: int | tuple[int, int] = 1,
padding: int | tuple[int, int] | str = @,
bias: bool = True,
padding_mode: str = "zeros",

super().__init__()

if padding_mode =+ "zeros":
raise NotImplementedError(f"padding_mode={padding_mode} is not
implemented")

self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = (

kernel_size

if isinstance(kernel_size, tuple)

else (kernel_size, kernel_size)
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self.stride = stride if isinstance(stride, tuple) else (stride, stride)
self.padding = padding

kernel_h, kernel_w = self.kernel_size
fan_in = in_channels * kernel_h * kernel_w
std = np.sqrt(2.8 / fan_in)

self.weight = Tensor(
np.random.normal(6, std, (out_channels, in_channels, kernel_h, kernel_w)),
requires_grad=True,

)
if bias:

self.bias = Tensor(np.zeros(out_channels), requires_grad=True)
else:

self.bias = None

def forward(self, x: Tensor) — Tensor:
return conv2d(
X,y
self.weight,
self.bias,
self.stride,
self.padding,

Inisialisasi parameter dalam Conv2d menggunakan metode inisialisasi Kaiming He znitialization [1].
Simpangan baku untuk inisialisasi filter dihitung berdasarkan fan-in, yaitu jumlah koneksi masukan
ke setiap neuron luaran. Untuk konvolusi, fz7-7n adalah perkalian dari jumlah kanal masukan dengan

ukuran filter. Pendekatan ini membantu menjaga variansi aktivasi agar tetap stabil sepanjang lapisan

dan menghindari masalah hilangnya gradien (vanishing gradients) atau ledakan gradien (gradient
explision).

Ingat kembali kita pernah membahas inisialisasi ini sebelumnya pada implementasi lapisan
linier. Bedanya, pada lapisan linier fan-in dan fan-out merujuk pada jumlah neuron. Pada
konvolusi, keduanya merujuk pada jumlah kanal masukan dan luaran.

5.2. Lapisan Pooling

Lapisan berfungsi untuk mengurangi dimensi spasial peta fitur sembari mempertahankan informasi
yang penting. Dalam hal ini, informasi yang dianggap penting adalah nilai maksimal dari pada jendela
geser. Berbeda dengan konvolusi yang mempelajari filter melalui pelatihan, pooling menggunakan
operasi deterministik tanpa parameter yang dapat dipelajari.

Operasi pooling memiliki beberapa manfaat utama, antara lain, mengurangi jumlah parameter
dan komputasi dalam jaringan, membantu model menjadi lebih robust terhadap pergeseran kecil
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dalam masukan, dan mengambil fitur yang paling menonjol dari setiap wilayah pada citra. Operasi
pooling yang paling umum adalah max pooling, yang mengambil nilai maksimum dari setiap jendela.
Untuk citra, ini setara dengan mengambil piksel paling terang dalam setiap wilayah.

Gambar 10: Ilustrasi operasi max pooling 2x2 dengan stride 2 pada peta fitur

5.2.1. Max Pooling dengan im2Col

Menariknya, kita dapat menggunakan kembali infrastruktur im2col yang sudah kita bangun untuk
konvolusi. Idenya sederhana: ekstrak tutupan seperti biasa, kemudian ambil nilai maksimum dari

setiap tutupan alih-alih melakukan perkalian matriks.

Untuk max pooling dengan filter berukuran spasial k;, x k,, dan stride (langkah pergeseran)

S}, X 8,,, ukuran luaran dihitung dengan:

h. 2p, — k
hout={ i T 2P hJ+1 (5.2)
Sh
42, —k
wout = \:wm sp'w wJ + 1 (53)

dengan hy, dan wy, adalah tinggi dan lebar citra masukan, k;, dan k,, adalah ukuran kernel pooling,
dan w,,; adalah dimensi spasial luaran yang

Py, dan p,, adalah padding yang ditambahkan, serta b
dihasilkan.

out

Berikut implementasi max pooling menggunakan im2col:

def max_pool2d(
input: Tensor,
kernel_size: int | tuple[int, int],
stride: int | tuple[int, int] | None = None,
padding: int | tuple[int, int] = 8,
) = Tensor:
if isinstance(kernel_size, int):
kernel_h = kernel_w = kernel_size
else:
kernel_h, kernel_w = kernel_size
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if stride is None:

stride_h = stride_w = kernel_h
elif isinstance(stride, int):

stride_h = stride_w = stride
else:

stride_h, stride_w = stride

if isinstance(padding, int):
pad_h = pad_w = padding
else:
pad_h, pad_w = padding

N, C, H, W = input.shape
H_out = (H + 2 * pad_h - kernel_h) // stride_h + 1
W_out = (W + 2 * pad_w - kernel_w) // stride_w + 1

# Ekstraksi tutupan
col = im2col(input.data, kernel_h, kernel_w, stride_h, stride_w, pad_h, pad_w)
col = col.reshape(N * H_out * W_out, C, kernel_h * kernel_w)

# Max pooling

max_idx = col.argmax(axis=2)

out = col.max(axis=2)

out = out.reshape(N, H_out, W_out, C).transpose(6, 3, 1, 2)

result = Tensor(out, requires_grad=input.requires_grad)

def backward_fn(upstream_grad: NDArray) — list[NDArray | None]:
if not input.requires_grad:
return [None]

# Siapkan gradien
dout = upstream_grad.transpose(8, 2, 3, 1).reshape(-1)

# Buat matriks gradien jarang (sparse)
# Kita perlu menempatkan gradien pada posisi yang ditunjukkan oleh max_idx
dmax = np.zeros((N * H_out * W_out, C * kernel_h * kernel_w))

# Penyebaran tervektorisasi menggunakan indeks lanjutan

rows = np.arange(N * H_out * W_out)[:, None]

cols = np.arange(C)[None, :] * kernel_h * kernel_w + max_idx
dmax[rows, cols] = dout.reshape(N * H_out * W_out, C)

# Konversi kembali ke bentuk citra

dx = col2im(
dmax, input.shape, kernel_h, kernel_w, stride_h, stride_w, pad_h, pad_w

return [dx]
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result.backward_fn = backward_fn
result.inputs = [input]

return result

5.2.2. Fungsi Laluan Mundur untuk Max Pooling

Laluan mundur untuk max pooling memiliki karakteristik unik: gradien hanya mengalir melalui
elemen yang memiliki nilai maksimum dalam setiap jendela pooling. Elemen lain menerima gradien

nol.

Dalam implementasi di atas, kita menggunakan array max_idx untuk melacak posisi nilai
maksimum di setiap jendela. Saat propagasi balik, gradien dari lapisan berikutnya diteruskan
hanya ke posisi-posisi tersebut.

Pendekatan vektorisasi yang kita gunakan menghindari iterasi eksplisit dengan memanfaatkan
advanced indexing NumPy:

# Penyebaran tervektorisasi menggunakan pengindeksan lanjutan
rows = np.arange(N * H_out * W_out)[:, None]

cols = np.arange(C)[None, :] * kernel_h * kernel_w + max_idx
dmax[rows, cols] = dout.reshape(N * H_out * W_out, C)

Teknik ini jauh lebih efisien daripada iterasi manual melalui setiap posisi.

5.2.3. Modul MaxPool2d
Seperti halnya Conv2d, kita juga membuat kelas MaxPool2d yang mengikuti APT Module:

class MaxPool2d(Module):
def __init__(
self,
kernel_size: int | tuple[int, int],
stride: int | tuple[int, int] | None = None,
padding: int | tuple[int, int] = 0,

super().__init__()

self.kernel_size = (
kernel_size
if isinstance(kernel_size, tuple)
else (kernel_size, kernel_size)

)

self.stride = stride

self.padding = padding

def forward(self, x: Tensor) — Tensor:
return max_pool2d(x, self.kernel_size, self.stride, self.padding)
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Perhatikan bahwa MaxPool2d tidak memiliki parameter yang dapat dipelajari, sehingga kita tidak
perlu menginisialisasi bobot atau bias.

5.2.4. Jenis Pooling Lainnya
Meskipun max pooling adalah yang paling populer, ada beberapa variasi pooling lainnya:

1. Average Pooling: Mengambil rata-rata nilai dalam setiap jendela

2. Global Average Pooling: Mengambil rata-rata seluruh peta fitur menjadi satu nilai per kanal

3. Adaptive Pooling: Menyesuaikan ukuran kernel secara otomatis untuk menghasilkan ukuran
luaran yang diinginkan

Implementasi average pooling serupa dengan max pooling, hanya mengganti operasi max dengan
mean dan menyesuaikan propagasi mundurnya.

5.3. Lapisan Normalisasi

Lapisan normalisasi dalam arsitektur deep learning membantu menstabilkan dan mempercepat
proses pelatihan. Ide dasarnya sederhana: normalisasi nilai aktivasi untuk mengurangi pergeseran
distribusi internal (internal covariate shift) yang terjadi selama pelatihan.

Ketika kita melatih model deep learning, distribusi masukan ke setiap lapisan berubah seiring
pembaruan parameter lapisan sebelumnya. Fenomena ini memaksa setiap lapisan untuk terus
beradaptasi dengan distribusi masukan yang berubah, memperlambat konvergensi dan membuat

pelatihan lebih sulit.

5.3.1. Normalisasi Batch

Normalisasi batch (batch normalization) menormalkan aktivasi di sepanjang dimensi bazch. Untuk
memahami operasinya, perhatikan tensor masukan X € R™xd dengan m sampel dan d fitur. Nor-
malisasi batch menghitung statistik untuk setiap fitur di sepanjang dimensi bazch.

Untuk fitur ke-j (kolom ke-j dari X), dengan elemen-elemen {xl 51Ty s T }:

dengany; dan 3; adalah parameter yang dapat dipelajari untuk fitur ke-j. Operasi ini dilakukan untuk
setiap fitur j =1, ..., d.

Implementasi normalisasi bazch harus menangani dua mode berbeda: mode latih dan mode eval-
uasi. Saat latih, kita menghitung statistik dari bazch saat ini. Saat evaluasi, kita menggunakan statistik
yang telah diakumulasi selama pelatihan.
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class BatchNorm1d(Module):

super().__init__()
self.num_features = num_features
self.eps = eps

self.momentum = momentum

# Parameter yang dapat dipelajari
self.gamma = Tensor(np.ones(num_features), requires_grad=True)
self.beta = Tensor(np.zeros(num_features), requires_grad=True)

# Running statistics untuk mode evaluasi
self.running_mean = np.zeros(num_features)
self.running_var = np.ones(num_features)

def forward(self, x: Tensor) —> Tensor:
if self.training:
# Hitung statistik batch
batch_mean = tensor_mean(x, dim=8, keepdims=True)
batch_var = tensor_mean((x - batch_mean) * (x - batch_mean),
dim=8, keepdims=True)

# Update running statistics (tanpa gradien)

self.running_mean = (1 - self.momentum) * self.running_mean + \
self.momentum * batch_mean.data.squeeze()

self.running_var = (1 - self.momentum) * self.running_var + \
self.momentum * batch_var.data.squeeze()

# Normalisasi

x_norm = (x - batch_mean) / sqrt(batch_var + self.eps)
else:

# Gunakan running statistics

mean = Tensor(self.running_mean.reshape(1, -1))

var = Tensor(self.running_var.reshape(1, -1))

x_norm = (x - mean) / sqrt(var + self.eps)

# Skala dan geser

return self.gamma *

x_norm + self.beta

N

def __init__(self, num_features: int, eps: float = 1e-5, momentum: float = 6.1):

Untuk lapisan konvolusional, kita perlu versi 2D yang menormalkan sepanjang dimensi batch dan

spasial:

-

class BatchNorm2d(Module):

def __init__(self, num_features: int, eps: float = 1e-5, momentum: float = 6.1):

super().__init__()
self.num_features = num_features
self.eps = eps

self.momentum = momentum

# Parameter per kanal
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self.gamma = Tensor(np.ones(num_features), requires_grad=True)
self.beta = Tensor(np.zeros(num_features), requires_grad=True)

# Running statistics per kanal
self.running_mean = np.zeros(num_features)
self.running_var = np.ones(num_features)

def forward(self, x: Tensor) — Tensor:
# x shape: (batch, channels, height, width)
if self.training:
# Statistik per kanal: mean dan var sepanjang batch, height, width
batch_mean = tensor_mean(x, dim=(8, 2, 3), keepdims=True)
batch_var = tensor_mean((x - batch_mean) * (x - batch_mean),
dim=(8, 2, 3), keepdims=True)

# Update running statistics

self.running_mean = (1 - self.momentum) * self.running_mean + \
self.momentum * batch_mean.data.squeeze()

self.running_var = (1 - self.momentum) * self.running_var + \
self.momentum * batch_var.data.squeeze()

x_norm = (x - batch_mean) / sqrt(batch_var + self.eps)
else:

# Reshape untuk hroadcasting

mean = Tensor(self.running_mean.reshape(1, -1, 1, 1))

var = Tensor(self.running_var.reshape(1, -1, 1, 1))

x_norm = (x - mean) / sqrt(var + self.eps)

# Reshape gamma dan beta untuk broadcasting
ganma = self.gamma.reshape(1, -1, 1, 1)
beta = self.beta.reshape(1, -1, 1, 1)

*

return gamma * x_norm + beta

Implementasi kita menyimpan running_mean dan running_var sebagai larik NumPy array, bukan

Tensor. Ini karena kedua statistik tersebut tidak perlu gradien dan hanya digunakan saat inferensi.

5.3.2. Normalisasi Lapisan

Normalisasi lapisan (layer normalization) menormalkan aktivasi di sepanjang dimensi fitur alih-alih

dimensi batch. Ini membuatnya lebih cocok untuk arsitektur rekuren dan transformer dimana ukuran

batch bisa sangat kecil atau bahkan 1.

Untuk masukan x € R%, normalisasi lapisan menghitung:
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(5.5)

Perbedaan utama dengan batch normalisasi bazch adalah statistik dihitung per sampel, bukan per

batch. Ini membuat layer norm tidak bergantung pada ukuran batch dan tidak memerlukan statistik

running untuk mode evaluasi.

class LayerNorm(Module):

def __init__(self, normalized_shape: int | tuple[int, ...], eps: float = 1e-5):

super().__init__()

if isinstance(normalized_shape, int):
normalized_shape = (normalized_shape,)

self.normalized_shape = normalized_shape

self.eps = eps

self.gamma = Tensor(np.ones(normalized_shape), requires_grad=True)
self.beta = Tensor(np.zeros(normalized_shape), requires_grad=True)

def forward(self, x: Tensor) — Tensor:
ndim = len(self.normalized_shape)
axes = tuple(range(-ndim, 9))

mean = x.mean(dim=axes, keepdims=True)
var = ((x - mean) * (x - mean)).mean(dim=axes, keepdims=True)

x_norm = (x - mean) / sqrt(var + self.eps)

*

return self.gamma * x_norm + self.beta

Pendalaman

Ada perdebatan dalam komunitas tentang penempatan normalisasi lapisan: pre-norm

(sebelum sub-lapisan) vs post-norm (setelah sub-lapisan). Pre-norm cenderung lebih stabil

untuk model yang sangat dalam, sementara post-norm sering memberikan performa akhir

yang lebih baik dengan tuning yang tepat.

5.4. Lapisan Rekuren

Lapisan rekuren dirancang untuk memproses data sekuensial seperti teks, suara, atau deret waktu.

Berbeda dengan lapisan laluan maju biasa yang memproses setiap masukan secara independen (seperti

padalapisan linier dan konvolusi), lapisan rekuren memiliki melibatkan informasi dari langkah waktu

sebelumnya untuk melakukan pemrosesan pada langkah waktu saat ini.
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5.4.1. Neural Network Rekuren (Recurrent Neural Network) “Vanila”

RNN vanila merupakan bentuk paling sederhana dari jaringan rekuren. Pada setiap langkah waktu
t, RNN menerima masukan x, dan hbidden state sebelumnya h,_;, kemudian menghasilkan hidden

state baru h,. Secara matematis, operasi RNN didefinisikan sebagai:

h, = tanh(W,,x, + Wy, h; ; +b,,)

5.6
Y :Whyht+by ( )

dengan W, adalah matriks bobot input-to-hidden, W, adalah matriks bobot hidden-to-hidden,
dan W, adalah matriks bobot hidden-to-output.

class RNNCell(Module):
def __init__(self, input_size: int, hidden_size: int):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size

# Input to hidden

self.w_ih = Tensor(
np.random.randn(input_size, hidden_size) * 6.01,
requires_grad=True

)

# Hidden to hidden

self.w_hh = Tensor(
np.random.randn(hidden_size, hidden_size) * 6.01,
requires_grad=True

)

# Bias

self.b_h = Tensor(
np.zeros(hidden_size),
requires_grad=True

def forward(self, x: Tensor, h_prev: Tensor) —> Tensor:
# h_t = tanh(W_ih @ x_t + W_hh @ h_prev + b_h)
return tanh(x @ self.w_ih + h_prev @ self.w_hh + self.b_h)

class RNN(Module):
def __init__(self, input_size: int, hidden_size: int, num_layers: int = 1):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers

# Tumpuk RNN cells

self.cells: list[RNNCell] = []

for i in range(num_layers):
layer_input_size = input_size if i = 0 else hidden_size
cell = RNNCell(layer_input_size, hidden_size)
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setattr(self, f"cell_{i}", cell)
self.cells.append(cell)

def forward(self, x: Tensor, h_8: Tensor | None = None) — tuple[Tensor, Tensor]:
batch_size, seq_len, _ = x.shape

# Inisialisasi hidden state mula-mula
if h_B is None:
h_8 = Tensor(np.zeros((self.num_layers, batch_size, self.hidden_size)))

# Pemrosesan tiap langkah waktu
outputs = []
h_t = h_0

for t in range(seq_len):
# Seperti yang sudah kita implementasikan, indexing ini
# memiliki backward_fn!
x_t = x[:, t, :1 # (batch, input_size)

# Pemrosesan tiap lapisan
h_t_new = []
for layer in range(self.num_layers):
cell = self.cells[layer]
h_prev = h_t[layer, :, :]
h_curr = cell(x_t if layer = 8 else h_t_new[-1], h_prev)
h_t_new.append(h_curr)

h_t = stack(h_t_new) # (num_layers, batch, hidden_size)
outputs.append(h_t_new[-1]) # Gunakan luaran dari lapisan sebelunnya

output = stack(outputs, dim=1) # (batch, seq_len, hidden_size)
return output, h_t

Perhatikan bahwa kita menggunakan setattr untuk mendaftarkan cells sebagai submodul.
Alasannya adalah kita membuat ce/ls dalam perulangan dengan jumlah dinamis. Python
tidak mengizinkan kita menulis self.cell {i} = cell karena {i} bukan sintaks yang valid.
Dengan setattr(self, f'cell_{i}', cell), kita bisa membuat nama atribut secara dinamis
dalam perulangan. Hasilnya sama, yaitu setiap ce// tetap terdaftar di modul dan parameternya
terdeteksi oleh pengoptimal.

Masalah utama RNN vanila adalah vanishing gradient dan exploding gradient saat memproses
sekuens panjang. Gradien cenderung mengecil atau membesar secara eksponensial saat dipropagasi

balik melalui banyak langkah waktu.
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5.4.2. Long Short Term Memory (LSTM)

Long short term memory (LSTM) dikembangkan untuk menanggulangi permasalahan gradien yang
menghilang, yang dimiliki RNN. LSTM memanfaatkan mekanisme gerbang (gaze) untuk menyaring
informasi pada langkah waktu mana yang layak dijaga dan mana yang layak dilupakan. Ada 4 gerbang
yang dimiliki oleh LSTM:

LSTM memiliki arsitektur yang lebih kompleks dibandingkan RNN vanila. Arsitektur ini terdiri

dari tiga gerbang utama dan satu cell state:

* Forget gate: Menentukan informasi mana dari cell state sebelumnya yang perlu dilupakan
* Imput gate: Menentukan nilai-nilai baru mana yang akan disimpan dalam ce// state
* Output gate: Menentukan bagian mana dari cell state yang akan dijadikan luaran sebagai hidden

state

Untuk setiap langkah waktu ¢, LSTM menghitung:

f, =o(W;-[h,_;,x,]+by) (Forget gate)

i, =0(W,-h,_;,x,] +b;) (Input gate)

¢, = tanh(W, - [h,_,,x,] +b,) (Kandidat cell state) 5.7)
c,=f0c,_; +i,0¢, (Cell state baru)

o, =o(W,-[h,_;,x,]+Db,) (Output gate)

h, = o, © tanh(c,) (Hidden state baru)

di mana o adalah fungsi sigmoid, © adalah perkalian antar-elemen, dan [h (t—1}s Xt] adalah peng-

gabungan (concatenation) dari hidden state sebelumnya dan masukan saat ini.

class LSTMCell(Module):
def __init__(self, input_size: int, hidden_size: int):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size

self.i2h = Linear(input_size, 4 * hidden_size)
self.h2h = Linear(hidden_size, 4 * hidden_size, bhias=False)

self.reset_parameters()
def reset_parameters(self):
std = (2.8 / (self.input_size + self.hidden_size)) ** 6.5

for param in self.parameters():
param.data = np.random.normal(@, std, param.data.shape)

forget_bias_start = self.hidden_size
forget_bias_end = 2 * self.hidden_size
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self.i2h.bias.data[forget_bias_start:forget_bias_end] = 1.0

def forward(self, x: Tensor, hidden: tuple[Tensor, Tensor]) — tuple[Tensor,
Tensor]:
h_prev, c_prev = hidden

# Transformasi linear untuk masukan dan hidden state
gi = self.i2h(x) # gate masukan

gh = self.h2h(h_prev) # gate hidden

if, i_i, i_g, i_o = split(gi, 4, dim=1)

h_f, h_i, h_g, h_o = split(gh, 4, dim=1)

# Hitung gerbang-gerbang
forget_gate = sigmoid(i_f + h_f)
input_gate = sigmoid(i_i + h_i)
cell_gate = tanh(i_g + h_g)
output_gate = sigmoid(i_o + h_o)

# Update cell state dan hidden state
c_new = forget_gate * c_prev + input_gate
h_new = output_gate * tanh(c_new)

*

cell_gate

return h_new, c_new

Perhatikan bahwa alih-alih membuat empat transformasi linier terpisah untuk setiap gerbang seperti

ini

self.forget_gate = Linear(input_size, hidden_size)
self.input_gate = Linear(input_size, hidden_size)
self.cell_gate = Linear(input_size, hidden_size)

self.output_gate = Linear(input_size, hidden_size)

Kita menggabungkan semuanya dalam dua transformasi besar dengan hasil yang identik:

self.i2h = Linear(input_size, 4 * hidden_size) # input-to-hidden
self.h2h = Linear(hidden_size, 4 * hidden_size, bias=False) # hidden-to-hidden

Dengan begini, kita bisa mengurangi operasi matriks, yaitu empat perkalian matriks kecil diganti
dengan dua perkalian matriks besar. Ini menguntungkan kita bila menggunakan BLAS di mana ia
bekerja lebih efisien untuk matriks besar.

Kemudian kita implementasikan pada kode python:

class LSTM(Module):
def __init__(
self,
input_size: int,
hidden_size: int,
num_layers: int =1
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super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers

# Buat LSTM cells untuk setiap layer

self.cells = []

for layer in range(num_layers):
layer_input_size = input_size if layer = 0 else hidden_size
cell = LSTMCell(layer_input_size, hidden_size)
self.cells.append(cell)
setattr(self, f'cell_{layer}', cell)

def forward(
self,
x: Tensor,
hidden: tuple[Tensor, Tensor] | None = None
) — tuple[Tensor, tuple[Tensor, Tensor]]:
batch_size, seq_len, _ = x.shape

# Inisialisasi hidden state jika tidak diberikan
if hidden is None:

h_t = zeros((self.num_layers, batch_size, self.hidden_size))
c_t = zeros((self.num_layers, batch_size, self.hidden_size))
else:

h_t, c_t = hidden

# Proses setiap langkah waktu
outputs = []
for t in range(seq_len):
x_t = x[:, t, :] # (batch, input_size)

# Proses tiap layer

h_t_new = []

c_t_new = []

for layer in range(self.num_layers):
cell = self.cells[layer]
h_prev = h_t[layer, :, :]
c_prev = c_t[layer, :, :]

# Masukan ke layer ini adalah luaran layer sebelumnya atau masukan asli
layer_input = x_t if layer = 0 else h_t_new[-1]

h_curr, c_curr = cell(layer_input, (h_prev, c_prev))
h_t_new.append(h_curr)
c_t_new.append(c_curr)

h_t = stack(h_t_new) # (num_layers, batch, hidden_size)

c_t = stack(c_t_new) # (num_layers, batch, hidden_size)
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outputs.append(h_t_new[-1])
output = stack(outputs, dim=1)
return output, (h_t, c_t)

5.4.3. Gated Recurrent Unit (GRU)

Gated recurrent unit (GRU) adalah varian arsitektur rekuren yang diperkenalkan oleh Cho et al.
[7] sebagai alternatif yang lebih sederhana dari LSTM. GRU mempertahankan kemampuan untuk
menangani dependensi jangka panjang namun dengan arsitektur yang lebih ringkas. Perbedaan
utamanya adalah GRU menggabungkan forget gate dan input gate menjadi satu update gate, serta
menggabungkan cel/ state dan hidden state.

Arsitektur GRU hanya memiliki dua gerbang:
* Update gate (z,): Menentukan seberapa banyak informasi dari langkah waktu sebelumnya yang
dipertahankan

* Reset gate (r,): Mengontrol seberapa banyak informasi masa lalu yang diabaikan saat menghitung

kandidat hidden state

Secara matematis, operasi GRU pada langkah waktu ¢ adalah:

=o(W,-[hy_y,x,]+Db,) (Reset gate)

=0o(W, - [h_1,x]+b,) (Update gate)
Ilt = tan (Wh [r, ©hy_q,%x,] +by) (Kandidat hidden state) (5:8)
h,=(1—2,)0h, ,+z, Oh, (Hidden state baru)

Perhatikan bagaimana update gate z, berfungsi sebagai interpolasi linier antara hidden state sebelum-
nya dan kandidat baru. Ketika z, mendekati 0, GRU mempertahankan informasi lama sepenuhnya.

Sebaliknya, ketika z, mendekati 1, GRU mengganti hidden state dengan informasi baru.

class GRUCell(Module):
def __init__(self, input_size: int, hidden_size: int):
super().__init__()
self.input_size = input_size

self.hidden_size = hidden_size

self.izh
self.hzh

Linear(input_size, 2 * hidden_size)
Linear(hidden_size, 2 * hidden_size, bias=False)

self.i2n = Linear(input_size, hidden_size)
self.h2n = Linear(hidden_size, hidden_size, hias=False)

self.reset_parameters()
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def reset_parameters(self):
# Inisialisasi Xavier
std = (2.8 / (self.input_size + self.hidden_size)) ** 6.5
for param in self.parameters():
param.data = np.random.normal(8, std, param.data.shape)

def forward(self, x: Tensor, h_prev: Tensor) —> Tensor:
# Hitung reset dan update gates
gi = self.i2h(x)
gh = self.h2h(h_prev)
ir, i_z = split(gi, 2, dim=1)
h_r, h_z = split(gh, 2, dim=1)

reset_gate = sigmoid(i_r + h_r)
update_gate = sigmoid(i_z + h_z)

# Kandidat hidden state dengan reset gate
n_t = tanh(self.i2n(x) + self.h2n(reset_gate * h_prev))

# Interpolasi antara hidden state lama dan kandidat baru
h_new = (1 - update_gate) * h_prev + update_gate * n_t

return h_new

Implementasi GRUCell menggunakan strategi yang sama dengan LSTM untuk efisiensi, yaitu
menggabungkan transformasi linier untuk kedua gerbang. Perhatikan juga penggunaan reser gate
pada perhitungan kandidat hidden state. Operasi reset_gate * h_prev memungkinkan model untuk
“melupakan” bagian tertentu dari hidden state sebelumnya saat menghitung kandidat baru.

Berikut implementasi modul utama GRU:

class GRU(Module):
def __init__(self, input_size: int, hidden_size: int, num_layers: int = 1):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers

# Buat GRU cells untuk setiap lapisan

self.cells = []

for layer in range(num_layers):
layer_input_size = input_size if layer = 0 else hidden_size
cell = GRUCell(layer_input_size, hidden_size)
self.cells.append(cell)
setattr(self, f'cell_{layer}', cell)

def forward(
self,
x: Tensor,
h_8: Tensor | None = None
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) = tuple[Tensor, Tensor]:
batch_size, seq_len, _ = x.shape

# Inisialisasi hidden state jika tidak diberikan
if h_8 is None:

h_t = Tensor(np.zeros((self.num_layers, batch_size, self.hidden_size)))
else:

h_t = h_8

# Proses setiap langkah waktu
outputs = []
for t in range(seq_len):
x_t = x[:, t, :]1 # (batch, input_size)

# Proses tiap lapisan

h_t_new = []

for layer in range(self.num_layers):
cell = self.cells[layer]
h_prev = h_t[layer, :, :]

# Masukan ke lapisan ini adalah luaran lapisan sebelumnya
# atau masukan awal

layer_input = x_t if layer = 0 else h_t_new[-1]

h_curr = cell(layer_input, h_prev)
h_t_new.append(h_curr)

h_t = stack(h_t_new) # (num_layers, batch, hidden_size)
outputs.append(h_t_new[-1]) # Luaran dari layer terakhir

output = stack(outputs, dim=1) # (batch, seq_len, hidden_size)

return output, h_t

Kesederhanaan GRU dibandingkan LSTM membuatnya lebih cepat untuk dilatih dan membu-
tuhkan parameter yang lebih sedikit. Dalam praktiknya, performa GRU sering kali sebanding dengan
LSTM untuk berbagai tugas pemrosesan sekuens [8]. Pilihan antara LSTM dan GRU juga bergan-
tung pada dataset spesifik dan kebutuhan komputasi. Untuk dataset yang lebih kecil atau ketika
kecepatan pelatihan menjadi prioritas, GRU sering menjadi pilihan yang lebih baik.

Meskipun GRU memiliki parameter yang lebih sedikit dibandingkan LSTM, mekanisme

gerbangnya tetap efektif dalam menangani masalah gradien yang menghilang. Reset gate
memungkinkan model untuk membuang informasi yang tidak relevan, sementara update
gate memungkinkan propagasi gradien jangka panjang dengan mengontrol seberapa banyak
informasi yang dipertahankan dari langkah waktu sebelumnya.
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5.5. Lapisan Attention

Mekanisme attention merupakan salah satu inovasi terpenting dalam arsitektur deep learning modern.
Konsep ini pertama kali diperkenalkan oleh Bahdanau ez 4/. [9] untuk mengatasi keterbatasan
arsitektur encoder-decoder tradisional dalam menerjemahkan kalimat panjang. Ide dasarnya sederhana
namun powerful: alih-alih memaksa model untuk mengompresi seluruh informasi masukan ke dalam
satu vektor hidden state tetap, attention memungkinkan model untuk “memperhatikan” bagian-

bagian relevan dari masukan secara dinamis.

5.5.1. Motivasi dan Intuisi

Bayangkan kita sedang menerjemahkan kalimat “The agreement on the European Economic Area was
signed in August 1992” ke bahasa Indonesia. Saat menerjemahkan kata “ditandatangani”, Anda secara
alami akan fokus pada kata “signed” dalam kalimat sumber. Inilah esensi dari mekanisme attention:
memberikan bobot perhatian yang berbeda pada bagian-bagian masukan berdasarkan relevansinya
terhadap langkah pemrosesan saat ini.

Pada arsitektur seq2seq tradisional dengan LSTM, seluruh kalimat sumber harus dikodekan men-
jadi satu vektor context berukuran tetap. Ini menjadi hambatan informasi, terutama untuk sekuens
panjang. Attention mengatasi masalah ini dengan mempertahankan akses ke semua bidden state dari
encoder dan menghitung kombinasi tertimbang yang relevan untuk setiap langkah dekoding.

5.5.2. Attention Dasar: Bahdanau Attention

Mekanisme attention Bahdanau menghitung skor relevansi antara bidden state decoder saat ini dengan
setiap hidden state encoder. Skor-skor ini kemudian dinormalisasi menggunakan softmax untuk
menghasilkan bobot attention.

Secara formal, untuk hidden state decoder s, pada langkah waktu t dan hidden state encoder h,

untuk posisi masukan 7, kita hitung:

€y = fatt(st_l,hi) (Skor attention)
exple,,;
Oy = T p( tz) (Bobot attention)
> exp(esy) (5.9)
T
c, = Z oy h; (Vektor context)
=1

dengan f,;, adalah fungsi skor yang dapat diimplementasikan dengan berbagai cara. Bahdanau
menggunakan feed-forward network satu lapis:

fatt(st_l,hi) =v' t"a‘nh(vvsst—l + Whhz) (510)

class BahdanauAttention(Module):
def __init__(self, hidden_size: int, attention_size: int):
super().__init__()
self.hidden_size = hidden_size
self.attention_size = attention_size
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self.W_s = Linear(hidden_size, attention_size, bias=False)
# Proyeksi untuk hidden state encoder

self.W_h = Linear(hidden_size, attention_size, bias=False)
# Vektor untuk menghitung skor akhir

self.v = Linear(attention_size, 1, bias=False)

def forward(
self,
decoder_hidden: Tensor, # (batch, hidden_size)
encoder_outputs: Tensor # (batch, seq_len, hidden_size)
) — tuple[Tensor, Tensor]:
batch_size, seq_len, _ = encoder_outputs.shape

# Proyeksikan decoder hidden state
# (batch, attention_size) — (batch, 1, attention_size)
s_proj = self.W_s(decoder_hidden).unsqueeze(1)

# Proyeksikan semua encoder outputs
# (batch, seq_len, hidden_size) — (batch, seq_len, attention_size)
h_proj = self.W_h(encoder_outputs)

# Hitung skor attention

# (batch, seq_len, attention_size)
combined = tanh(s_proj + h_proj)

# (batch, seq_len, 1) — (batch, seq_len)
scores = self.v(combined).squeeze(-1)

# Normalisasi dengan softmax
attention_weights = softmax(scores, dim=1)

# Hitung context vector sebagai weighted sum

# (batch, seq_len) — (batch, seq_len, 1)

attention_weights_expanded = attention_weights.unsqueeze(-1)

# (batch, seq_len, hidden_size) * (batch, seq_len, 1) = sum — (batch,
hidden_size)

context = (encoder_outputs *

attention_weights_expanded).sum(din=1)

return context, attention_weights

Implementasi di atas menunjukkan bagaimana mekanisme aztention menghitung relevansi antara
setiap posisi encoder dengan keadaan decoder saat ini. Metode unsqueeze dan operasi broadcasting
memungkinkan kita menghitung semua skor secara paralel, tanpa perulangan eksplisit.

5.5.3. Luong Attention: Penyederhanaan dan Variasinya

Luong et 4/.[10] mengusulkan beberapa penyederhanaan dan variasi dari mekanisme attention Bah-
danau. Perbedaan utamanya adalah Luong attention menggunakan hidden state saat ini (s, ) alih-alih

hidden state sebelumnya (s,_; ), dan menawarkan beberapa fungsi skor alternatif:

L. Dot product: [, (s 1) = sih,
2. General: s, n,) = s; Wh,
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class LuongAttention(Module):
def __init__(self, hidden_size: int, method: str = "dot"):
super().__init__()
self.hidden_size = hidden_size
self.method = method

if method = "general":
self.W = Linear(hidden_size, hidden_size, bias=False)
elif method = "concat":

self.W = Linear(hidden_size * 2, hidden_size, hias=False)
self.v = Linear(hidden_size, 1, bias=False)

elif method = "dot":
raise ValueError(f"Unknown attention method: {method}")

def forward(
self,
decoder_hidden: Tensor, # (batch, hidden_size)
encoder_outputs: Tensor # (batch, seq_len, hidden_size)
) — tuple[Tensor, Tensor]:
batch_size, seq_len, _ = encoder_outputs.shape

if self.method = "dot":
# Simple dot product
# (batch, hidden_size) @ (batch, hidden_size, seq_len) — (hatch, seq_len)
scores = (decoder_hidden.unsqueeze(1) @ encoder_outputs.transpose(-2,
-1)).squeeze(1)

elif self.method = "general":

# Weighted dot product

# (batch, hidden_size) — (batch, 1, hidden_size)

decoder_hidden_proj = self.W(decoder_hidden).unsqueeze(1)

# (batch, 1, hidden_size) @ (batch, hidden_size, seq_len) = (batch,
1, seq_len)

scores = (decoder_hidden_proj @ encoder_outputs.transpose(-2,
-1)).squeeze(1)

elif self.method = "concat":
# Concatenation-based
# Expand decoder hidden untuk setiap posisi encoder
decoder_hidden_expanded = decoder_hidden.unsqueeze(1).expand(-1, seq_len,
-1)
# Concat: (batch, seq_len, hidden_size * 2)
concat = torch.cat([decoder_hidden_expanded, encoder_outputs], dim=-1)
# Score: (batch, seq_len)
scores = self.v(tanh(self.W(concat))).squeeze(-1)

# Normalisasi dan hitung context
attention_weights = softmax(scores, dim=1)
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context = (encoder_outputs * attention_weights.unsqueeze(-1)).sum(dim=1)
return context, attention_weights

Metode dot product adalah yang paling sederhana dan efisien secara komputasi, namun mensyaratkan
encoder dan decoder memiliki dimensi hidden state yang sama. Metode general menambahkan matriks
bobot yang dapat dipelajari untuk transformasi linier, memberikan fleksibilitas lebih. Metode concat
paling ekspresif namun juga paling mahal dari sisi penggunaan memori dan komputasi.

Meskipun Bahdanau dan Luong attention mengatasi masalah hambatan informasi, arsitek-
tur tetap bergantung pada RNN yang harus memproses sekuens secara berurutan. Hal ini
membatasi paralelisasi dan memperlambat training untuk sekuens panjang.

5.5.4. Self-Attention: Fondasi Transformer

Dari penelitian populer bertajuk “Attention is All You Need”, Vaswani et al. [11] memperkenalkan
self-attention. Versi ini adalah varian khusus di mana mekanisme aztention dapat “memperhatikan”
semua posisi lain dalam sekuens yang sama. Ini menjadi komponen fundamental arsitektur Trans-
former yang akan kita bahas di bagian selanjutnya.

Pada self-attention, kita memproyeksikan masukan yang sama menjadi tiga representasi berbeda:
* Query (Q): Apa yang dicari oleh posisi saat ini
* Key (K): Apa yang ditawarkan oleh setiap posisi
* Value (V): Informasi aktual yang akan diagregasi

V =XWy (5.11)

KT
Attention(Q, K, V) = softmax (Q ) A%

Vi

dengan d, adalah dimensi key, dan pembagian dengan 4/d;, untuk menjaga stabilitas numerik saat
dimensi besar.

Perhatikan bahwa pada persamaan di atas, sama sekali tidak ada komponen yang melibatkan
langkah waktu sebelumnya (¢t — 1) yang diproses secara berulang. Ini menunjukkan bahwa se/f-
attention berbeda secara fundamental dari kedua versi attention sebelumnya, karena self-attention
tidak menggunakan arsitektur rekuren sama sekali. Semua embedding dalam sekuens diproses secara

sekaligus.

Tabel 6 menunjukkan beberapa masalah RNN yang dipecahkan oleh self-attention, sekaligus titik
awal RNN mulai ditinggalkan.

RNN Self-Attention
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Paralelisasi Posisi ¢ harus menunggu posisi t — 1 selesai =~ Semua posisi dihitung dalam satu operasi
diproses matriks seperti ditunjukkan pada oleh fungsi

Attention(Q, K, V)

Akses jarak jauh = Informasi dari posisi ke-1 ke posisi ke-100 = Posisi ke-100 dapat langsung “melihat” posisi

harus melewati 99 langkah 1
Alur gradien Gradien dari posisi ke-100 ke posisi ke-1 harus = Gradien dapat mengalir langsung melalui
melewati 99 perkalian matriks bobot attention

Tabel 6: Permasalahan RNN yang diselesaikan oleh self-attention

Pengembangan lanjutan dari se/f-attention adalah multi-head attention, yang memungkinkan model
untuk secara serentak memperhatikan informasi dari representasi subruang yang berbeda. Setiap
head dapat belajar untuk menangkap jenis hubungan yang berbeda dalam data. Misalnya, satu bead
mungkin fokus pada hubungan sintaksis, sementara bead lain menangkap hubungan semantik.

Berikut implementasinya dalam kode Python.

class SelfAttention(Module):
def __init__(self, embed_dim: int, num_heads: int = 1):

super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads

assert self.head_dim * num_heads = embed_dim, \

"embed_dim must be divisible by num_heads"

# Proyeksi untuk Q, K, V

self.W_q = Linear(embed_dim, embed_dim)
self.W_k = Linear(embed_dim, embed_dim)
self.W_v = Linear(embed_dim, embed_dim)

# Proyeksi output
self.W_o = Linear(embed_dim, embed_dim)

self.scale = self.head_dim ** -08.5

def forward(self, x: Tensor, mask: Tensor | None = None) — Tensor:
batch_size, seq_len, embed_dim = x.shape

# Hitung Q, K, V

Q = self.W_q(x) # (batch, seq_len, embed_dim)
K = self.W_k(x)

V = self.W_v(x)

# Reshape untuk multi-head attention

# (batch, seq_len, num_heads, head_dim) — (batch, num_heads, seq_len,
head_dim)

Q = Q.reshape(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1,

2)
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=
n

K.reshape(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1,

2)

<<
1

V.reshape(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1,

2)

# Hitung attention scores

# (batch, num_heads, seq_len, head_dim) @ (batch, num_heads, head_dinm,
seq_len)

# — (batch, num_heads, seq_len, seq_len)

scores = (Q @ K.transpose(-2, -1)) * self.scale

# Apply mask jika ada (untuk padding atau causal attention)
if mask is not None:
scores = scores.masked_fill(mask = 6, -1e9)

# Softmax untuk mendapatkan attention weights
attention_weights = softmax(scores, dim=-1)

# Apply attention ke values

# (batch, num_heads, seq_len, seq_len) @ (batch, num_heads, seq_len, head_dim)
# — (batch, num_heads, seq_len, head_dim)

attended = attention_weights @ V

# Reshape kembhali
# (batch, num_heads, seq_len, head_dim) — (batch, seq_len, embed_dim)
attended = attended.transpose(1, 2).reshape(batch_size, seq_len, embed_dim)

# Final projection
output = self.W_o(attended)

return output

Konsep guery, key, dan value dalam self-attention terinspirasi dari sistem temu balik infor-
masi (#nformation retrieval). Bayangkan sebuah basis data di mana setiap entri memiliki ey
(identitas) dan value (konten). Untuk mengakses informasi, kita menggunakan guery yang
dicocokkan dengan semua key untuk menemukan value yang relevan. Dalam konteks azten-
tion, “pencocokan” dilakukan melalui dot product dan “relevansi” dihitung melalui softmax.

Pendalaman

Kompleksitas komputasi se/f-attention adalah O (n2 d ) dengan n adalah panjang sekuens dan
d adalah dimensi model. Ini menjadi bottleneck untuk sekuens yang sangat panjang. Berbagai
varian efisien telah diusulkan, seperti Linformer [12] yang mengurangi kompleksitas menjadi

O(nd) dengan memproyeksikan matriks attention ke dimensi yang lebih rendah, atau
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Reformer[13] yang menggunakan locality-sensitive hashing untuk mengurangi kompleksitas

menjadi O(nlogn).

5.5.4.1. Multi-Head Attention
5.5.5. Masked Attention dan Causal Attention

Dalam beberapa aplikasi, kita perlu membatasi posisi mana yang dapat “diperhatikan” oleh posisi
tertentu. Dua jenis pembatasan yang umum adalah:

1. Padding mask: Mengabaikan posisi padding dalam sekuens yang panjangnya bervariasi
2. Causal mask: Mencegah posisi untuk melihat posisi “masa depan” (untuk model autoregresif)

Padding mask diperlukan karena kita sering memproses sekuens dalam bazch dengan panjang yang
berbeda. Sekuens yang lebih pendek diisi dengan token padding, dan kita tidak ingin model memper-

hatikan posisi-posisi ini.

Causal mask penting untuk model generatif seperti GPT, di mana prediksi token ke-i hanya
boleh bergantung pada token 1 hingga ¢ — 1. Ini memastikan model dapat digunakan untuk generasi

autoregresif tanpa information leakage.

Implementasi masking dilakukan dengan menambahkan nilai negatif yang sangat besar (misalnya
—10?) pada skor attention untuk posisi yang di-mask. Setelah sofimaz, posisi-posisi ini akan memiliki
bobot mendekati nol.

5.5.6. Visualisasi dan Interpretasi Attention

Salah satu keunggulan mekanisme attention adalah interpretabilitasnya. Bobot attention dapat
divisualisasikan sebagai heatmap yang menunjukkan posisi mana yang “diperhatikan” model saat
memproses posisi tertentu. Ini memberikan wawasan tentang apa yang dipelajari model dan dapat
membantu dalam debugging atau analisis kesalahan.

Dalam tugas penerjemahan, visualisasi attention sering menunjukkan pola diagonal yang menan-
dakan korespondensi kata-per-kata, dengan deviasi menarik untuk konstruksi gramatikal yang
berbeda antar bahasa. Untuk tugas guestion answering, attention weights dapat mengungkapkan
bagian mana dari konteks yang dianggap relevan untuk menjawab pertanyaan.

Meskipun visualisasi attention memberikan intuisi yang berguna, interpretasi harus

dilakukan dengan hati-hati. Penelitian terbaru menunjukkan bahwa bobot attention tidak
selalu berkorelasi langsung dengan kepentingan fitur, dan model mungkin menggunakan
mekanisme lain bersamaan dengan attention untuk membuat keputusan.
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Bab 6. Transformer

6.1. Komponen Penyusun
6.1.1. Positional Encoding

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut
labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore
dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum
nobis opinemur. Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique
possit, augeri amplificarique non possit. At etiam Athenis, ut e patre audiebam facete et urbane
Stoicos irridente, statua est in quo a nobis philosophia defensa et collaudata est, cum id, quod maxime
placeat, facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Temporibus autem
quibusdam et.

class PositionalEncoding(Module):
def __init__(self, d_model: int, max_len: int = 5000):
super().__init__()

pe = np.zeros((max_len, d_model))
pos = np.arange(max_len)[:, np.newaxis]

div_term = np.exp(
np.arange(8, d_model, 2) * (-np.log(166060.8) / d_model)

)

pe[:, B::2] = np.sin(pos * div_term)
pe[:, 1::2] = np.cos(pos * div_term)
self.pe = pe

def forward(self, x: Tensor) — Tensor:

seq_len = x.shape[1]
return x + Tensor(self.pe[:seq_len])

6.1.2. Multi-head Attention

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut
labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore
dolemus, fieri tamen permagna accessio potest, si aliquod acternum et infinitum impendere malum
nobis opinemur. Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique
possit, augeri amplificarique non possit. At etiam Athenis, ut e patre audiebam facete et urbane

Stoicos irridente, statua est in quo a nobis philosophia defensa et collaudata est, cum id, quod maxime
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placeat, facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Temporibus autem

quibusdam et.

6.1.3. Feed-Forward Network

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut
labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore
dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum
nobis opinemur. Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique
possit, augeri amplificarique non possit. At etiam Athenis, ut e patre audiebam facete et urbane
Stoicos irridente, statua est in quo a nobis philosophia defensa et collaudata est, cum id, quod maxime
placeat, facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Temporibus autem
quibusdam et.

6.1.4. Residual Connection

6.2. Blok Transformer
6.2.1. Blok Transformer Sebagai Modul

class TransformerBlock(Module):
def __init__(self, d_model: int, num_heads: int, d_ff: int, dropout: float = 8.6):
super().__init__()

self.attention = SelfAttention(d_model, num_heads)
self.norml = LayerNorm(d_model)
self.norm2 = LayerNorm(d_model)

self.ffn = Sequential(
Linear(d_model, d_ff),
ReLU(),
Linear(d_ff, d_model),

def forward(self, x: Tensor, mask: Tensor | None = None) — Tensor:
attn_out = self.attention(x, mask)
x = self.norm1(x + attn_out)
ffn_out = self.ffn(x)
x = self.norm2(x + ffn_out)
return x

6.2.2. Transformer Encoder

class TransformerEncoder(Module):
def __init__(
self,
num_layers: int,
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d_model: int,
num_heads: int,
d_ff: int,
vocah_size: int,
max_len: int = 512,

super().__init__()

self.embedding = Embedding(vocab_size, d_model)
self.pos_encoding = PositionalEncoding(d_model, max_len)

self.blocks = []

for i in range(num_layers):
block = TransformerBlock(d_model, num_heads, d_ff)
setattr(self, f"block_{i}", block)
self.blocks.append(block)

def forward(self, x: Tensor, mask: Tensor | None = None) — Tensor:
x = self.embedding(x)
x = self.pos_encoding(x)

for block in self.blocks:
x = block(x, mask)

return x

6.2.3. Penggunaan Transformer Encoder untuk Klasifikasi

class TransformerClassifier(Module):
def __init__(
self,
num_layers: int,
d_model: int,
num_heads: int,
d_ff: int,
vocab_size: int,
num_classes: int,
max_len: int = 512,

super().__init__()

self.encoder = TransformerEncoder(
num_layers, d_model, num_heads, d_ff, vocab_size, max_len

)

self.classifier = Linear(d_model, num_classes)

def forward(self, x: Tensor, mask: Tensor | None = None) — Tensor:
encoded = self.encoder(x, mask) # (batch, seq_len, d_model)
pooled = encoded[:, 8, :] # CLS token (first position)
return self.classifier(pooled)
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